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Sampling, Sampling Distributions, 
Parameter Estimation and Confidence 
Intervals 
All work for this handout can be found in file “Module4Demos.xlsx”. 

Populations and Samples 
A population is a collection of all objects of interest. Some populations include: 

• All voters registered for a US Presidential election. 

• All Americans who have a CPA. 

• All cows in India. 

• All customers shopping at a department store on a chosen day. 

• All computer chips produced this month at a semiconductor plant. 

• All families in Houston, Texas. 

Often, we are interested in estimating a numerical characteristic of a population, or a population 

parameter. Some examples of population parameters include: 

• Proportion of voters preferring the Democratic candidate 

• Average age of all CPA’s 

• Average weight of all cows in India 

• The standard deviation of the amount spent by a department store customer 

• Fraction of all computer chips that are defective 

• Median income of families in Houston, Texas 

A complete enumeration of the population is a census. A sample is a part of the population that we 

observe to glean insights about the population. Samples are used for several reasons: 

• If the population is large, it is impractical to take a census. For example, it would be impractical 

to sample every registered voter to learn how they are voting. 

• Sampling involves examining a smaller set than a census, reducing measurement error. 

• Sampling may involve destroying elements of the population. For example, testing a chip to see 

if the chip is defective may involve destroying the chip. 

Estimates from sample data are called statistics and are used to estimate a population parameter. For 

example, we could estimate the: 

• Median income of Houston families by taking a sample of 100 Houston families and using the 

median income in the sample to estimate the population’s median income. 

• Proportion of defective chips by testing 100 chips and using that proportion to estimate the 

fraction of defective chips in the population. For example, if 5 of the 100 tested chips are 

defective we would estimate that 5% of the chips produced are defective. 
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• Average weight of all cows in India by weighing 100 cows and using the average weight of the 

cows in the sample to estimate the average weight of all Indian cows 

Simple Random Sample (SRS) 
Suppose a population has N individuals and we want to take a sample of size n. The sample is a simple 

random sample if each set of n individuals has the same chance of being chosen. For example, consider 

a random sample without replacement of two items from a population of size 5 (n = 2, N = 5.) Each of 

the possible ten samples shown below has the same chance of being chosen. 

(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5). 

Note that each population member has as 40% chance (2/5) of being chosen; in general, the chance of 

any population member being chosen is n/N.  

It is easy to use Excel to generate a simple random sample. Using the players listed in the “SRS” 

worksheet in the Sample.xlsx spreadsheet, let’s select a simple random sample of 10 from a list of NBA 

players. Simply enter the formula =RAND() next to each player’s name in column F, and then “Copy 

Paste Special Values” in column G. Then, sort the columns in descending order based on the values in 

column G. Your simple random sample is the first 10 players listed. The values in column D show the list 

of 10 that was selected when we originally ran this analysis (see Figure 4-1). Note the differences 

between your sample and ours. 

 

Figure 4-1. SRS of 10 NBA players 

Other Types of Sampling 
We could also do some more sophisticated types of sampling although some of these strategies will lead 

to some inherent biases. Let’s look at some other options, starting with stratified random sampling. 

With stratified random sampling, the population is divided into groups, called strata, based on some 

characteristic. Then, within each group, a sample, usually random, is selected. How many are selected 

from each strata depends on the purpose for creating the strata initially. As an example, suppose we 

want to make sure that the percentage of genders in our study is equal to that of the population. We 

plan to sample 100 people from the population and the percent of women is 45%. In this case, we’d 

randomly select 45 women and 55 men to participate in our study. In most cases, stratification is done 
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to ensure that sample percentages match population percentages on some key characteristic. However, 

imagine that you are studying something that tends to be more of an issue for some part of your 

population than for another, more so for women rather than men, such as the glass ceiling effect, for 

example. In this case, you might use stratified random sampling to over select women. You might select 

60, rather than 45, women and 40 men. 

Cluster sampling involves dividing up the population into clusters and then selecting clusters to be part 

of the sample. Every cluster should represent the population on a small scale and be as heterogenous as 

possible. Every population element must belong to one and only one cluster. If the researcher decides to 

include all individuals from a cluster in the sample, this called one-stage clustering. If the researcher 

randomly selects from the clusters, this is called multi-stage clustering. How is this different from 

stratified sampling? In stratified, some members from each group or strata are selected, but in cluster, 

all or part of some clusters are used but not all clusters are included. If the clusters are heterogeneous 

and representative, this sampling strategy tends to work well. 

In systematic random sampling, the researcher first randomly picks the first item or subject from the 

population. Then, the researcher will select each n'th subject from the list. The results are usually 

representative of the population unless certain characteristics of the population are repeated for every 

n'th individual, which is highly unlikely. 

Convenience sampling is sampling technique where subjects are selected because of their convenient 

accessibility and proximity to the researcher. For example, professors who have their students 

participate in their research projects are using convenience sampling. Clearly, there are a lot of 

problems with this type of sampling because it is very unlikely to represent the population… unless, of 

course, your population is those that are close to you. 

Problems with Sampling 
A sample that is not random can cause serious errors. Suppose every 10th chip produced is defective. 
Then the population has 10% defectives. If we sample every 10th item, however, we would estimate that 
100% of the chips would be defective. As the following examples show, many problems can arise when 
conducting a sampling study. 
 
Bias is a systematic error that is introduced into your study that can prejudice your results in some way. 
You should be aware of the most common biases as you consider your sample. In most cases, bias is 
unintentional and happens because the sampling procedure wasn’t well thought out. A classic example 
of this is a company who wants information about one of their products in a particular area and decides 
to do a phone survey. Even if they do a random sample, there’s still a problem… they are missing input 
from customers who don’t have a phone. There may be something systematically different about people 
who use their product and own a phone and those who use it but do not have a phone. 
 
This is an example of selection bias. Selection bias occurs when each element in the population does not 
have same chance of being chosen in sample. Other examples include the 1972 Presidential election; 
although Nixon won the election in a landslide, liberal movie critic, Pauline Kael, said she did not know 
anyone who voted for Nixon, a very conservative candidate. A few other examples…Bernie Sanders 
outperformed polls in the 2016 Democratic Michigan primary because pollsters assumed the electorate 
would be like that of previous primaries where 50% of the electorate is 50 years or older. In reality, 
there were many more young voters than expected. Similarly, in the 2016 election, many pollsters 
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assumed the electorate would look like 2012 electorate, but in 2016, more rural voters and fewer 
African Americans voted compared to 2012. Complicating this, today, only 10% of all people contacted 
by pollsters respond, making it difficult to get a random sample. We consider poll results with some 
skepticism. 
 

Nonresponse bias occurs when respondents differ in meaningful ways from non-respondents. Similarly, 
voluntary response bias occurs when sample members are self-selected volunteers; the resulting sample 
tends to over-represent individuals who have strong opinions.  
Publication bias occurs because studies with positive results are more likely to be published than 
negative or null results. This is a big problem in many fields because the failure to publish these types of 
studies leads us to draw conclusions without all the information. For example, in studies of 
antidepressants 94% of studies with positive results were published but only 14% of studies with 
negative results were published. 

 
Survivorship Bias occurs when a meaningful part of a population is not considered in your sample. For 
example, in World War 2, engineers noticed that after a mission, bullet holes tended to be clustered in 
the wing, rear gunner, and body of returned planes. They started reinforcing those areas without giving 
thought to where the bullets were doing the most damage to the planes that did NOT return. Today, we 
this in finance when mutual fund companies drop poorly performing mutual funds, which overinflates 
their past returns, or when you look at successful people, identify an interesting characteristic, such as 
dropping out of school, and assuming that all successful people have dropped out of school. Essentially, 
you are ignoring failures—all those people who dropped out of school and went nowhere—when 
interpreting the results of your study. 
 
Response bias refers to the bias that results from problems in the measurement process, for example, 
when you ask leading questions, when people tell you want they think you want to hear, or because 
they want to present themselves in a favorable way (this is known as social desirability bias). This 
happens when a small fraction of those sampled respond, and the respondents may not be 
representative of the population. For example, the TV news show Nightline asked people to call in about 
whether the US should leave the UN. 67% of those calling wanted the US to leave the UN. A correctly 
designed sample study estimated only 28% of people wanted the US to leave the UN. 
 

Point Estimates of Population Parameters and Sampling Distributions 
Suppose we want to estimate the unknown mean of a random variable. Suppose this unknown mean = 

µ. We use the sample statistic 𝑥̅, the sample mean as an estimate of µ. If we take a sample of n 

independent observations x1, x2, …, xn from a population, then  

𝑥̅ =
𝑥1+𝑥2+⋯𝑥𝑛

𝑛
. 

The sample mean is an unbiased estimate of µ. This means that if we take many samples and average 

our 𝑥̅ values, we should get µ. To show this, we use the rule that the expected value of a sum of random 

variables is the sum of expected values shows:  

E(𝑥̅) = E(xn1/n) + E(x2/n) + … E(xn/n) = n*(µ/n) = µ.  
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It can be shown that among all unbiased estimators of the population mean, the sample mean has the 

smallest variance. For that reason, we use the sample mean as a point estimate for the population 

mean. 

Because the sample mean 𝑥̅ is a random variable, it has a variance. Suppose the population from which 

we are sampling has a variance of σ2. To find the variance of 𝑥̅, we use the logic of expected values like 

we did for the mean. As a result,  

var(𝑥̅) = var(x1/n2) + var(x2/n2) + ...var(xn/ n2) = nσ2/n2 = σ2/n.  

The standard deviation of 𝑥̅ is (σ/√𝑛) and is referred to as the standard error of 𝑥̅. 

As an illustration, suppose our population is the roll of a die, and we take a sample of size 2. All possible 

outcomes, each having probability 1/6, are shown in Figure 4-2 and “Two Dice” worksheet of 

Sample.xlsx. Recall that when one die is tossed, the expected mean is 3.5 and variance is 2.92. From 

Figure 4-2, we find E(𝑥̅) = µ= 3.5 and var(𝑥̅) = 2.92/2 (2 being the number of die that are tossed) = 1.46. 

 

Figure 4-2. Sample Means When Tossing Two Dice 
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Suppose we want to estimate an unknown population proportion, p. For example, let p be the fraction 

of registered voters in Seattle, Washington, who are Independents. To estimate p, we might ask n 

randomly chosen Seattle voters if they are independents and estimate p by 

𝑝̂ = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑣𝑜𝑡𝑒𝑟𝑠 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 𝑤ℎ𝑜 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

𝑛
. 

In short, we estimate the population parameter, p, by the fraction of “successes” in the sample. For 

example, if 100 of 400 samples voters say they are independents, we would estimate p by 𝑝̂ = 100/400 = 

0.25. Of course, 𝑝̂ is a random variable.  

We see that 𝒑̂ is an unbiased estimate of the population proportion, p. It can be shown that among all 

unbiased estimates of the population mean, 𝒑̂ has the smallest variance. Therefore, we use 𝒑̂ as a 

point estimate for p. 

 

It can easily be shown that E(𝑝̂) = p and standard deviation 𝑝̂ = √
𝑝(1−𝑝)

𝑛
. Because we often do not know 

p, we usually assume that the standard deviation (𝑝̂) = √
𝑝 ∗(1−𝑝 )

𝑛
. The standard deviation of 𝑝̂ is called 

the standard error of 𝑝̂. 

Our estimates of µ by 𝑥̅ and p by 𝑝̂ are point estimates of population of parameters. Of course, if we 

take a different sample, our point estimates will change. Therefore, it is important to measure the 

precision or accuracy of our point estimates of population parameters. We next turn our attention to 

the study of confidence intervals that measure the precision, or accuracy, of our point estimates of 

population parameters. 

The Standard Normal 
A normal random variable with mean 0 and standard deviation 1 is called a standard normal and is often 

referred to as Z (remember Z scores have a mean of 0 and standard deviation of 1). Confidence intervals 

require finding the percentiles of the standard normal.  

In the “Standard Normal” worksheet, find the 2.5%ile (often referred to as z.025) and 97.5%ile (often 

referred to as z.975) using the formulas in Figure 4-3. The NORM.S.INV function returns percentiles for a 

standard normal. From Figure 4-3, we find that there is a 95% of the values in a standard normal are 

between -1.96 and 1.96. 

 

Figure 4-3. Finding Percentiles for Standard Normal 
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2.5 %ile -1.95996 -1.95996 =NORM.INV(0.025,0,1) =NORM.S.INV(0.025)

97.5%ile 1.959964 1.959964 =NORM.INV(0.975,0,1) =NORM.S.INV(0.975)
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95% Confidence Interval for Population Mean 
Suppose we have a random variable, X, with an unknown mean, µ and a known standard deviation, σ. 

To estimate µ, we take a random sample X1, X2, …, Xn from X. If we assume n >= 0, then the Central 

Limit Theorem tells us that the sample mean 𝑥̅ will be approximately normal. After standardizing 𝑥̅, we 

find that:  

Prob(z.025 <= (
𝑥̅−µ

𝜎/√𝑛
) ≤ z.975) = .95.  

Rearranging this a bit, we find that:  

Prob(𝑥 ̅+ z.025σ/√𝑛 <= µ <= 𝑥̅ + z.975σ/√𝑛) = 0.95.  

This equation tells us that if we take 100 samples of size n from a random variable X and construct for 

each sample the interval, the  

lower limit = 𝑥̅ - z.025σ/√𝑛 or 𝑥̅-1.96σ/√𝑛 and the 

upper limit = 𝑥 ̅+ z.975σ/√𝑛  or 𝑥̅+1.96σ/√𝑛.  

Confidence intervals provide the range where approximately 95% of the 100 intervals will contain the 

true value of µ. 

Example of 95% Confidence Interval 

You are told the standard deviation of invoice values is $500. A sample of 100 invoices taken from a 

large sample of invoices has a sample mean value of $4500. You are 95% sure the mean size of an 

invoice is within what range? 

As shown in the “CI for Mu” worksheet and Figure 4-4, we find that our 95% confidence interval for µ is 

[$4402, $4598]. 

The half width of a 95% confidence interval is the margin of error in the estimate, or z.025σ/√𝑛. Thus, our 

margin of error in the estimate of the population mean is $98. 

 

Figure 4-4. 95% Confidence Interval for Mean Invoice Size 
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Demonstration of Meaning of 95% Confidence Interval 
In the “IQ CI” worksheet, we take 100 samples of 36 IQs and compute 100 95% confidence intervals. IQ 

is a normal random variable with mean 100 and standard deviation 15. If you hit F9, the sample values 

and the confidence intervals change. You will see that invariably around 95 of the 100 intervals contain 

the true value (100) of the population mean. 

95% Confidence Interval for Population Proportion 
Consider a large population in which an unknown fraction or proportion, p, of the population has a given 

attribute. We now calculate a 95% confidence interval formula for a population proportion, p. If n𝑝̂ > 10 

and n(1-𝑝̂) > 10, then the central limit applies, and 𝑝̂ will follow a normal random variable. Standardizing  

𝑝̂ we find that: 

Prob(-1.96 <= 
𝑝 −𝑝

√
(𝑝̂ ∗(1−𝑝̂ )

𝑛

 <= 1.96) = 0.95. 

Rearranging this a bit, we see that: 

Prob(𝑝̂ - 1.96√
𝑝 ∗(1−𝑝̂ )

𝑛
 <= p <= 𝑝̂ + 1.96√

𝑝 ∗(1−𝑝 )

𝑛
) = 0.95.  

This equation tells us that if we take 100 samples of size n from a large population in which an unknown 

fraction, p, of the population has an attribute, and construct for each sample the interval the 

lower limit = 𝑝̂ - 1.96√
𝑝 ∗(1−𝑝 )

𝑛
 and the 

upper limit = 𝑝̂ + 1.96√
𝑝 ∗(1−𝑝 )

𝑛
. 

Approximately 95 of these intervals will contain the true proportion, p. 

Example 

Assume that every US voter will either vote for the Democratic or Republican candidate in a Presidential 

election. Suppose in a random sample of 1500 registered voters, 800 prefer the Democratic candidate. 

Construct a 95% confidence interval for the proportion of registered voters that prefer the Democratic 

candidate. In the “Voters” worksheet and Figure 4-5, we see that the confidence interval is [.5081, 

.5586], meaning that the actual percentage of registered voters preferring the Democratic candidate is 

between 50.8% and 55.9%. The half width of the confidence interval is 2.5%, or the margin of error. This 

is consistent with the usual margin of error of 3% reported in Presidential election polls. It is truly 

remarkable that a sample of 1500 voters (out of 219 million registered voters) can, in theory, deliver this 

level of accuracy. Columbia statistician, Andrew Gelman, recently examined a large number of political 

polls and found that, for complex reasons, the actual margin of error turned out to be double the 

theoretical 3%. 
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Figure 4-5. 95% Confidence Interval for Population Proportion 

Blyth’s Method for Confidence Intervals on a Proportion 
If all trials result in success or failure, our proportion confidence interval will result in a confidence with 

0 width. This is unreasonable, so Blyth developed a confidence interval formula to be used when all 

trials result in success or failure.  The worksheet Blyth in the file Module4demos.xlsx shows how to use 

Blyth’s Method. Suppose my son has driver to work 500 times without an accident. Let’s find a 95% 

confidence interval for the chance he will have, or will not have an accident. Simply enter the number of 

trials in cell C3 and alpha of .05 for a 95% confidence interval (alpha of .01 for a 99% confidence interval) 

in C4. In cells C8 and D8 we find that we are 95% sure the chance of an accident is between 0 and 

0.005974 and  from cells C11 and D11 we find that we are 95% sure the chance of no accident is 

between  0,99492645 and 1. 

 

 

Sample Size Determination 
Suppose we want to be 95% sure that our estimate 𝑥̅  of the population mean µ is accurate within and 

error amount E. How large a sample size n is needed? Simply set the half-width of the 95% confidence 

interval for µ equal to E: E = 1.96σ/√𝑛. Solving for n we find n = (1.96σ/E)2. Note that if the sample size n 

exceeds 10% of the population size, then a smaller sample size is needed. 

Example 

Suppose we know the standard deviation of a large population of uncashed checks is $100. If we want to 

be 95% sure we can estimate the average size of an uncashed check is within $20, how large of a sample 

is needed? From the “Sample Size” worksheet and Figure 4-6, we find a sample size of 96 is needed. 
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Figure 4-6. Sample Size Determination for Estimating Population Mean 

Suppose we want to estimate a population proportion, p, and be 95% sure our estimate of p (𝑝̂) is 

accurate within a given amount E. How large does the sample size n need to be? From what we saw 

above, we know that sample size is based on the margin of error: E = 1.96√
𝑝 ∗(1−𝑝̂ )

𝑛
. 

The problem is that in advance of taking the sample, we do not know  𝑝̂. It is easy to show, however, 

that the maximum value of  𝑝̂ *(1- 𝑝̂) is 0.25 and occurs when  𝑝̂ = 0.5. Therefore, a conservative bound 

on the needed sample size can be obtained by setting  𝑝̂ = 0.5. Solving for n we obtain a sample size 

n = 1.962/4E2. 

To illustrate this, suppose we want to estimate the fraction of registered voters preferring the 

Republican candidate in a Texas election. We would like our estimate to have a 95% chance of being 

accurate within 3%. How large of a sample is needed? As shown in the “Sample Size” worksheet and 

Figure 4.7, a sample size of 1067 is needed.  

 

Figure 4-7. Sample Size Determination for Estimating a Proportion 

What if Sample Size is large Fraction of Population? 
If sample size n is a large percentage, such as greater than 10%, of population size, N, we have more 

confidence in our estimate of the population mean, and we can bee 95% sure that µ is between   

𝑥̅ - 
1.96∗𝜎∗𝐹𝐶

√𝑛
 and 𝑥̅ + 

1.96∗𝜎∗𝐹𝐶

√𝑛
. 

Here FC is the Finite Correction Factor =√
𝑁−𝑛

𝑁−1
. This formula is known as the Finite Correction 

Confidence Interval for the Population Mean. 

Note that if the sample size n is equal to the total population size, N, then FC and the width of the 

confidence interval are 0 because we know population mean exactly. Similarly, if the sample size is more 

than 10% of the population, then we are 95% sure the population proportion, p, is between a 
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lower limit = 𝑝̂ - 1.96∗ 𝐹𝐶 ∗ √
 𝑝 ∗(1− 𝑝 )

𝑛
 and an  

upper limit = 𝑝̂ + 1.96∗ 𝐹𝐶 ∗ √
 𝑝 ∗(1− 𝑝 )

𝑛
. 

A More General Sample Size Formula 
The finite correction factor also impacts sample size determination. Suppose N0 is the original sample 

size as determined above and N is the population size. If we sample without replacement, then a more 

accurate sample size formula would be:  

n = 
𝑁0∗𝑁

𝑁0+𝑁−1
. 

Examples 

Suppose we want to estimate the average salary of Fortune 500 CEOs. Assume the standard deviation of 

these salaries is known to be $5 million. If we sample 100 CEOs and find an average salary of $40 million, 

then as shown in the “Finite Correction” worksheet and Figure 4-8, we are 95% sure that the actual 

mean salary of Fortune 500 CEOs is between $39.12 and $40.88. Note that without the Finite Correction 

Factor the 95% confidence interval would be $39.02 to $40.88, which is slightly wider than the actual 

95% CI. 

 

Figure 4-8. Finite Correction Factor Confidence Interval for Population Mean 

Now, suppose we want to estimate the mean salary of Fortune 500 CEOs and be 95% sure our estimate 

is accurate within $1 million. How large of a sample is needed? In the “FC Sample Size” worksheet and 

Figure 4-9, we find that a sample size of 81 is needed. Without incorporating the Finite Correction 

Factor, we find that a larger sample size (96) would be needed. 
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4

5

6

7

8

9

10

11

12

13

14

15

F G H

samplesize 100

popsize 500

sigma 5

xbar 40

FC 0.895323 =SQRT((popsize-samplesize)/(popsize-1))

lowerlimit $39.12 =xbar-1.96*FC*sigma/SQRT(samplesize)

upperlimit $40.88 =xbar+1.96*FC*sigma/SQRT(samplesize)

WITHOUT FC FACTOR

lower 39.02 =xbar-1.96*sigma/SQRT(samplesize)

upper 40.98 =xbar+1.96*sigma/SQRT(samplesize)
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Figure 4-9. Sample Size with Finite Correction Factor 
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F G H I

Error 1

N 500

sigma 5

samplesizenoFC 96.04 =(1.96*sigma/Error)^2

samplesizeFC 80.70046 =samplesizenoFC*N/(samplesizenoFC+N-1)


