The zeros of Riemann's Zeta-Function on the eritical line.
By
G. H. Hardy and J. E. Littlewood.

1. Introduection.

1. We denote by N,(7) the number of zeros of {(s)=¢ (o + 2¢)
for which .
o=3%, O<t<T.
In a recent memoir in the Acta Mathematica') we proved that the
order of magnitude of N,(7T') is not much less than T%. More precisely,
we proved that to every &> 0 corresponds a T = T, (¢) such that

Ny(T)> Tt (T >T,).
Here we go a good deal further. In §2 we prove
Theorem A. There is a K >0 and a T, such that
(1.1) N,(T)> KT (T =>1T,)
The order of magnitude of N, (7') lies therefore between 7" and 7' log 7'.
In §§ 3—5 we prove, by rather more difficult analysis, a more precise
result, viz.

Theorem B. Let U=T?* where a>3. Then there is a
K=K(a)>0 and a Ty=T,(a) such that

(1.2) N,(P+U)—Ny(T)>KU  (T>T,).

" Some of the lemmas on which our argument depends have an interest
independent of the particular application made of them here. We have
therefore sometimes developed them further than is absolutely necessary
for our immediate purpose.

1) G. H. Hardy and J. E. Littlewood, Contributions to the theory of the
Riemann Zeta-Punction snd the theory of the distribution of primes, Acta Mathe-
matica, 41 (1917), 119-196 {177-184).
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2. Proof that No(T) > KT.
2.1. Lemma 1%). If ¢>0, s=1, >0, then

t—g ,
(2.1 C(s)»{—%—;s—z n-s=°(2n)“‘ f ~*cosudu,
n<lx n=1 nre
or
1 \
(2.111) (3)+1_8 +(y et le)ae— Y
n<z
- 25(27)" " D) net fu—ttsinudu
n=1 Inxg

Suppose first that 6 > 1; and let

()= —v--[o], X=I[a]
Then

'3 @0
i-8

(2.12) 3fv—8"1 y(v)dv = %x“‘ - sész + sf'u“"’“l (v]dv

z

-]

. zl“ﬁ
=g X (2~ (X 1) +Zn(n"——(n—i—1) 4.
n=X+1
Also ¥
(2.18) ¢(s) = n-s= 2 nt=—X (X +1)" +Zn — (n+1)79).
n<a n=X-+1 n=X+1

From (2.12) and (2. 13) it follows that

o

n= — =y (x)+ sfv““ w(v)dv.

(2.14) ¢(o)+ 2=
Now

(2.15) w(p)=2L YenZnry

except when v is an integer, when the sum of the serieg is 0. The tri-
gonometrical series is boundedly convergent throughout any interval of

values of v, and JP |v=5-1/dv is convergent. Hence®) we may multiply
2

?) The dash over the sign of summation indicates that, if 2 is an integer, the
lagt term ™% is to be veplaced by 3 z7°.

The lemma may be proved in various ways. The method followed here was
suggested to us by Dr. H. Cramér of Stockholm, and is materially simpler than that
which we had adopted originally.

%) See, for example, W. H. Young, The application of expansions to definite
integrals, Proc. London Math. Sec. (2), 9 (1919), 463—485 (468).
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(2.15) by sv=*=! and integrate term by term over the interval (z, co).

Thus d
xX P oD
s 11
va's lw('v)dv—:nz njv s=1sin 2nxodo
4 n=1z
o 0
-1 Y -
=2g(2x)° ‘Zn“lfu"*lsmudu,
n=l qnax
Frey LT N, -
(2.16) ("(S> M. - n — X ‘y}(x)
n L

+ 28(2m)% V fu“'*sinudu,
"’1 2nxz
which is equivalent to (2.111). This equation is so far proved only
when o >1. But

. —s—1 ;
-1 fu“’—isln udu=n*1(2nn2)"" cos2nnz—(s+1)n"1 ‘ru“"-’cos udu
2nanz By

=0(n?) +nt-1 [ O(u~"du = O (n-?),
2nnz

provided only o >> —1, and the series in (2.16) is uniformly convergent
for 0 > —1-6 > —1 and any finite range of ¢. Hence (2.16) is valid
for 6 > —1. Also

28(2 n)'-ins-lju-—s—: sinwde =7 .50 3mm+ 2(27)° n"‘fu“scos wdu

2R 2ang

if 0> 0. Substituting in (2.16), we obtain (2.11).

The equation (2.111) holds for the wider region o> —1. If we
suppose — 1< 6 < 0, and make % tend to zero, we obtain the classical
functional equation. The equations are easily modified so as to yield
representations for { (&) valid over an arbitrary half-plane.

2.2. Lemma 2, Suppose that 6 2 0,>0, |§—1|=26>0, and

{2.21) e <222,
where C >1, Then )
-3
(2.22) t(s)= n 1 —T—+0(a~)
ni=

uniformly in 3.
We use the result of Lemma 1 in the form (2.111). It is plainly
sufficient to prove that

o

{2.28) 8 2, nt-11,=s 2, n”‘fu“"1 sinudu =0 (2~7).
2nxz

Mathematische Zeitschrift. X. 19
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We have
2i1, = [u-steivdu— [u-s-tevdu=j, + Irs

2nz 2nazx

say. Also

o D o0
— J'u—-s—l et dyy = fu—-a——l ei@~tlogw) oy fu——a——l et duy,
2anz 2anz 2z

where w=u —tlogu. Now

dw
?l_u—_l_ gl_ﬂnxél >1 C
and increases steadily as u increases from 2nnz to infinity, Hence
© W
. gy COSw dw —o—1
9%(7")=fu 1 = O(nz)™° fcoswdw= O(nz)™""".
u=2nnz U w,

The same argument may be applied to the imaginary part of j, and to
both components of 4, *. Hence

Il,= O(nm)_”—l,
and the series (2.23) takes the form

0(1t] X no-10 (n2)™ ") = 0 (a=*~1[t]) = O (z~2).
Lemmasa 3. There 18 a constant 4 such that

n(8) =(1—2"")¢(8) = (— )" n—s 4 0 (x")

nl 2
uniformly for 6 >0,>0, |¢| < Az.
For

Z(-l)”_ln"‘ =2n—-’—-— 21'32 n=+ 0 (z=°)

nlw #<z ﬂ<1}z
3 -8
=(1—2"")¢(s) + I —2¥" *(“ 1o (27) = 1(s) + 0fa~7)
by Lemma 2, if 4 is sufficiently small. The restriction that [s ~1/=26>0
may obviously be omitted here.
Lemma 4. There is a constant A such that
. had (—-1)”’—1’”_‘__ (__1)15—-1”—'3 —
@(s)—n%/: o __é; + O (z-?)

logn

uniformly for ¢ >0,>0, |t| < 4z.

) The argument with j/ is simpler, as 1 +— ocours instead of 1— %, and the
inequality (2. 21) is not required.
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For, if [z] = X,

= L) ?l
v(—”iwiAA — Y ( 1 > ( 1)11 1 n?
o Rt -

2T log n Mol ]ogn log (n = 1) e ¥+1

. Vg L 2=} = O (g
‘I’O< .,)0( )=0(277),

nmxey “n(logm)
by Lemma 3.
2.3. Lemma 5 If 1<m<u, 1<n<Lu, m=Emn, then
(2.31) N = 0(ulgp).
Vmn ! log n !
We write ‘
~
=2+ 2+ 2 =2+2+2

m<in w}ngmégn inm
say. Then

and so for 23‘ In Zzwe have m =n 4 r, where |r| L 3n, and

1
W__._:OQL)_
110 W |7

i log 7

i

Hence

2= (22

This lemma is frequently useful. But what we shall require im-
mediately is a slightly different result, viz:

Lemma 6. If 2<m<u, 250 u, m=n, then
(2.32) P L —o( ).

Vmnlogmlogn l log -:’% * log 4

)- (ZZI) O (plog p).

\/n(n—l—r) r o1 rel

Dividing up the summation as in Lemma 87 we obtain
‘o 3 ;
-0 3 —olts)

Vnlogn
and
'L‘—
0 (T(Tg y) ¢

# “
1 1
S-S -
2.4. Lemma 7. If
11» 1 1
(2.41) () = 2( log)n 3
19*
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then op
(2. 42) [Ty (t+w)Pdt=0(T)
T

uniformly for 0 <u<T.
This i3 the proposition we shall actually use. It is plainly sufficient
to prove it when % = 0; and in this form it is an immediate corollary of

Lemmsa 8 If

( n 1 -8
(2.43) Z ]ogn '
then
T
1 [ !
) 7 ~ n)?
(2.44) szfo F+it)] ae “, n(logn)®

By Lemma 4, we have

@45)  p(G+it)= 3 G et roah =0 roir,
n< AT

say; and so

(2. 46) ﬂ f\@[ di+0(T %‘fgomt +oq)
:f[@1*dt+o(f}@4‘%zz)*+0(1).
Now - N
3 2 ( 1)m+n Tm t
(2'47) Zl@! dt_27;<ZA7,_,.n(logn)2+Z\/mn]ogmlognL(_hn) ai
1
=27 . ;
ngmn(lognﬁ— (Zfiz‘ﬁlogmlogn“og%,)

where the double summations are defined as in Lemma 6, with u =4 7.
From (2.82), (2.47), and (2,46) it follows that

T
' 1
_fT[ —{-zt t~fi@1 dt.~ 27T w(m

2.5 Lemma 9. If 0 <k < 1, the real parts®) of @ and b lie between

8) We are concerned with the case in which ¢ and b are pure imaginaries, For
the definition of H,’ («), see Nielsen, Handbuch der Theoric der Cylinderfunktionen,

p. 17.
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—k and 1 —k, the real part of y is positive, and y=2* has its principal
value, then
k+ito

(2.51) é-;_iff(s%—a)l’(s Fb)y Bds iay e T HT (24y),
k—ix

where
(2.511) v a—b
and Hi (x) is Hankel’s cylinder-function.

We find, in fac.t, by a straightforward ecaleulation of which it is
hardly necessary to give the details, that the value of the integral is
”ya+b
sin (@ —b) =

1}(:1 b)nz(._.])"(iy\En——a+b _L(a b,ﬂ), — 1) (iy)tnta=b
n"?'(l~a+b+n)‘ <~ i I(1+a=b+n)

- smvn %vw( —v-nJ- (2$y) J.v(2%y))

= imy " T H (2iy).
This proof supposes that @ = . The result may be at once extended
to cover this case by a passage to the limit.

Lemma 10. If k> }, and the other conditions of Lemma 9 are
satisfied, then
b+t
(2. 52) gi—;:fF(s+a)F(s+b)€(2s+2a)C(2s+2b)y’“ds

k~i»

@©
. lvai a+d ¥ .
=ime® y E e Hi(2iny),

n=1
where

Co=n2"0 0345 () =n""03, () =n"0_s,(n),
and o,(n) denotes the sum of the r-th powers of the divisors of n.
We have
(2.53) [(28+2a) (25 +2b) = fé—, (o>1),
where
(2.581)  dy= 3 a7 (%) = n-say, (n) = n-s-be,.
din

If now we write ny for y in (2.51), multiply by d,, and sum, we
obtain (2.52).
2.6. Suppose that s =1--7¢, and write

1 9t :v(t)-gﬂi‘+*1‘°‘~(t) P R L 1L
r(s)t(s)= = i =2a X (1),
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so that X (t) is real for real ¢. Supposing ¢ positive, and approximating
to the Gamma-function by Stirling’s Theorem, we obtain

. AN ER T Jit —latiogt S
(2.61) g(s)=—(—;> e (2me)t e X(t)(lﬁ—()l\7>>-
There is of course a conjugate formula when ¢ << Q.

We write
t+H

(2.62) I=1I(t,H)= [X(u)du.

Here H is a constant, which will ultimately be chosen large enough to
satisfy certain conditions. We shall suppose H > 2.

In the arguments preceding 4. 2 4 denotes generally an absolute
positive constant; so also do B;C, ... A few words are necessary as
to the use of 0. The constants implied by the O’s will also be absolute;
but there is a reservation which must be made as to the values of the
variables (¢, T', ¢, n, m, ...) for which the inequalities symbolised by
the O’s are satisfied. We shall frequently be concerned with inequalities
of the type (e.g.)

(2.63) |F (1) < f(H)p®),

and, if we wrote this simply in the form F = O(¢), the constant of the
O would depend upon H. If f(H) is a simple function of H (e.g. H),

we may write . .
F=0(Hep) (toe. |[Fi<AHg),
but sometimes it would be troublesome to maintain this degree of ex-
plicitness. We shall therefore sometimes write
F=0(f(H)o)

meaning thereby that (2. 63) is satisfied for some form of the function f(H).
The choice of H will always be prior logically to that of the variables
¢, T,... which tend to limits. We shall therefore have

o(f (H)p) +o(f (H) o) = o{f(H) p)
if @, = O(p), whatever be the forms of f and f;. We can extend this
principle to O, writing, e.g., .
O(TVH)+ O(HVT)=0(TVH)
(since HVT < TVH for T > T,(H)). But then it must be understood
that the inequalities symbolised by the O’s are only satisfied when 7'
exceeds & certain value, depending ‘on H alone. As we shall, in such- eages,
be concerned with large values of T only, and H is chosen first, there
is no.inconvenience in this reservation.
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From 4.2 onwards 4, B, C, ... denote positive numbers depending
only on the @ of Theorem B. and the constants implied by the O’s depend
upon a only.

2.71. Lemma 11. We have

T
(2. 711) J{I(t, H)Ydt < AHT (T~ T,—= T, H).
0
We note first that it is sufficient to prove
(2.712) fe—uz a0 <o e = e (D))
v
For then
z T Rt
fz“‘dt<eje‘f1“'dz< efe“fz“dmAHT (T > T,).
0 0 1]

2.72. We return to the result of Lemma 10, taking
a=1te, b=1i8, O0ZLae<H, O0ZLB<LH, a=f.
It follows from (2.52) and Cauchy’s Theorem® that

Jtiw

(2.721) J =g [ T(s+a)D(s +5)2(2s+ 2018 (25 + 20)y =21 ds

1-iw
= ine‘}’”y””j’cnfl:(%ny)-%* P,

where "

S=1Va{l(L-+b—a)l(1+2b—2a)y- 1+ (}+a—b)(1+2a—2b)y-t+22}.
2.73. We take

(2.781) y=me'® = metlhr=2) (e >0)

and make ¢— 0. It is plain, first that | @ | < f(H) or

(2.732) &= 0(f(H)).

Next, we write

—-iE } +iw
(2. 733) J = %(f+f+f)=J1+Jg+Ja.

j-imt—iB §
®) If arg y =6, so that —}x < 6 < =, we have
T(s+a)l(s+b)E(28+2a)¢(28+2b)y 28 =0(|t|4 e~ (x—20)It]),

80 that the deformation of the contour presents no difficulty.
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Here it is only J, that is of importance’). We have plainly
(2.784) J, = O(f(H)).
In J,
TG Fitta) <Adjt+e| Femtxitrel o g1p g g e beieeEl
C(i+2i(t+a)| <At +1),
and similarly for the factors involving §; and

ly=2) < A e?® < A el (e < La).
Hence

.y
(2.785) |J,| < Af‘;t+H;“‘3'(§t|’f 4 1) el E = alel gy

< [ B p 1)t e o s 2 f(H).
0

We have therefore, from (2.721), (2.732), (2.733), (2.734), and (2.735)

t+iw -
(2.736) J3=;2—i~if —izebigen 3o HI(2iny) 4 O(F(H)).
“1‘ n=t .
2.74. In J,; we have
y““zs::_.—-n'—é'—aite"i(ﬂ"ze)ie(n—ﬁs)t’

'(s+a)l(2s42a)=TE+i(t+a))l(i4+2i(¢ +«)
= A+ @) temimenino X (20 20) (140 (3)),

:At‘*e”*”“*“’n“HwX(zt+2u)(1+0(§)>,
I'(s+a)I'(s+b){ (254 2a) (25 + 2b)
= A T it vietp X (28 + 200) X (28 -+ 28) (1 +0 (lti"))
Since X (2t 204)X(2t+2,3)=0(f(ﬂ)t§) and y"“mO(e‘”—‘g‘“),
the error term contributes
O(f(H)ﬂ‘%'“‘dt)f_-_-O(f(H)s"%)\.

We have therefore
(2.741) J, = Ao~ trig=4rtfcatp (1 4 o(s))ft‘*X(zt+2u)X(zt+2ﬁ)e-
[

+O(f(H)e™4).

7) Because |y~ % | < Ae?9¢ and the Gamma-functions provide a factor &~ 7% .
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~2.75. Turning our attention to the series on the right hand side
of (2.736), we have

(ine%v.‘riz A ie— ta(a~p)

)‘)i

e
y=nel )V =iz e 0(e?),

yorh — yredh) = et g” DT B4 0(F),

i @ing = om0 (1))

nyz n/
. !,‘l(ﬂ»/l‘l L 2nre ) 1
= 2(1+0)" ‘ g0 tne? (1 ~r0( ))
K y b \ 1 n
N roai 1 LS Y
(2.751) ime! 'y“*b‘;\/ e, H'(2eny)
n=1

=%e“‘}“‘“+mn‘(“+ﬁ)(1 + O(e )Z C, --,,:w eQneh \1 +0( ))
1 Y

Here we may replace e? %) by 1 —}— O(ns ), since e4n+* <21+ Ane’
if ne? < 4 and .
Zlcn| anj—i:}-_?(”c)<2ne*‘ﬁ7f - ~ £,
ne2 >4 ” ned >4
Making this simplification, and comparing (2. 736), (2. 741) and (2. 751),
we obtain

(2.752) (1+ O(s))J.t—’} X (2t + 20) X (2t + 2f) e~ 2tdt -+ O(f(H)e™b)
1]

=(1+0(e))Aj’o,,,"';” (140 (%) +0ne ) +0(7 ().

Now '
umn 0,y (m)=0(dm) = 0nt),
—Enwe 1 ~§ —2nme)
50 03 o Iw ) = 0,
ch C_:’:”! O(nag)m ( znqe—gnve) 0(1)’
—2nme ol T
0(e) e, —-—Lfmo( St =0(1).
Hence (2.752) may be written in the simpler form
-211.7:3

+olame?).

(2. 753) J‘t}’:g‘X(Ztﬁ—‘Zu)X(Qt«i—Zﬂ)e dt-"AZ:c

¢) Nielsen, loc. cit., p. 134
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2.76. We now integrate (2.753) with respect to « and B, in each
case over the interval (0, H). So long as ¢ is positive, the series and
integral are uniformly convergent, and we may invert the orders of inte-
gration and summation. Since

H 2 1+ H)
fX(?t—f—Qa)doc:%fX(u)du,
O zt

the left hand side gives

_a

H
H”f dt X(2t+2a)da X(2t+28)df — { 1(2t,2H)) dt.
Thus, if we write

(2.761) —”c dadp = ff WP NP qadp

din
1 2
HHE  (amp) sin —Hlog—g
=3 d“dﬂ':AZ(——(g—*n : ))
dn § 3 din log—

we obtain

(2.762) f[ I(2,2H)) dt-—AZ

2.77. We proceed to consider the sum

sin(—é—Hlogi)
(2.771) C,=C,+Cy+ ... +C, = X (———T—-"—>

8>0,y>0,zy Lm log -

—~"nns

+olrm)t).

(since 2T ifn= zy and d = y) We can write
Y

(2.772) c.<2(3 + 3,
where 2’1 is defined by

O<kzsy<Lz, vy<m,
andz;by

Here + L <k <1: we shall ultimately take k=1 — ﬁ

0<y<Ltke, 2y my

2.781. In 271 we use the inequality -
(sin Hu)g < H?

w
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We obtain

(2.7811) Zlgbﬁ( Mi—-baet+)+ Y (g—kx+1}>
léa:g\,m

Im

\Wﬁxf\, Y
= O(H"m(1 — k) + O(H"Vm) + 0 (Hmlog )

—0(H’mlog )+ O (H" Vm),
when m —co.

2.782. The terms of _\_,: we divide into two classes as follows.
Associate with the point (z,y) the square @, , of which two opposite
corners are (x,y) and (x — 1, y-+1). In the first class y, we put all
terms («,y) for which the associated square does not cross the line y — kx;
in the second class p, the terms for which it crosses the line.

It is plain that, if (x,y) belongs to” y,,

1 dEdy

z’_"?;“f o(iw (108 i)g '
Sl

Jog

Hence

when the domain of integration is deﬁned by 0 <y <kE, < m,
&(n— 1)< m, and a fortiors when it is defined by 0 < # < k&, &y < 2m.
Transforming to polar coordinates, we obtain

\/,_j m_
arctank cos @ 8In f arctank
de

2.7821 __de —
( ) 2< f (16g tan 6)" frdr 2mf cos6 sin6 (log tane)*
4] 0 0 0

k
=2 e O (1)
¢ g log—k—

The number of terms of y, is less than a constant multiple of the

length of the line joining the origin to the point (\/—7,?—, Vlam), or of Vm.
Hence

(2.7822) == O(H" Vm).
From (2.772), (2.7811), (272 7821), and (2.7822) we obtain
g, =0 (B mlog L) +0(H" Vm)+0(l )
87"
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Taking now k=1 — TT’ we obtain

(2.783) C,.=O(Hm)-0(HVm)=0(Hm).

2.79. We can now complete the proof of Lemma 11. We have, by
(2.783) and partial summation,

= 0 (HVm)
and so =t
S0, —2nme T
LA :0(—:>.
foper Vr Ve

Hence, from (2.762),

ff’ e (12t 2H)" dt = 0(%) +0 ) - 0(’%

«w K

~2¢¢

£
[ 0

This is equivalent to (2. 711); and the lemma follows.

Proof of Theorem A.
2.8. We defined I by
4
I=1I{,H)=[X(u)du,
2
and we now define I by

t+H

~I=l(t,ﬂ)=tle(u)|du.

It is plain that J =|I| if there is no zero of X (u) in (¢, ¢+ H).

(I(zt,zﬂ))”dt:fe""ﬁ-t’*e‘”ﬁdt:O(V‘:)ft“% e "I"dt=0(

If
n(s)=(1—2¢() =1+ YU (s=itin),
n=2
we have
| X (2) |>Al ”‘2‘?_8!>A|n(a)[u
Hence
+H +H

(2.81) ~I>Atf|n(s)[dt> Ai)‘ttfn(s)dt

2 n—1 n—1
— AH A?R(z‘ _u “)—)
+ gn%“(”’mlogn %’n1}+t logn
= AH+ P,
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say, where ‘ ,
P=0(ylt-+-H) |+ p®)

in the notation of 2.4.

We denote by 7T the interval (T, 2T) and by U the subset of T
in which
{2.82) I < AH,
A being the same constant as occursin (2.81). Then |¥|>JAH in L.
But, by Lemma 7,

J

27
f1w)*dt-< BT,
T

B, like 4, being an absolute constant. Hence, if mU is the measure
of U, we have

14°H*mU < BT,
{2.88) mU < exT,
where ¢g is & number which tends to zero when H —oo. Thus
(2.84) I>14AH

if t lies in T and H is sufficiently large, except perhaps in a subset U
of T whose measure is less than egT.
On the other hand, by Lemma 11, we have

27"’
JI’dt < CHT.
If then T
(2.85) [I|>3AH
in a subset V of 7', of measure mV, we have

1A'H mY < CHT,

{2. 86) my < eg¥.
Comparing (2.82), (2.85), (2.83) and (2.86), we see that
{2.87) | Il<I

throughout all T' except a subset § of measure less than exT.

2.9. Divide T into [Q%] pairs of abutting intervals j,, j,, each,
except the last j,, of length H, and each j, lying immediately to the
right of the corresponding 4,. Then either j, or j, confains & zero of
X (¢), unless j, consists entirely of points of §. If the second case
oceurs for » j,’s, we have v H < egT or

y<—;§ [,
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And therefore there are, in 7', at least

1 T T
<§—5H>H>rff

zeros, if H is sufficiently large; which proves the theorem.

3. The approximate functional equation.

3.1. Lemma 12, Suppose that ¢ s fized, 0 <o <1, t >4,
§> 4, and

(3.11) 1=I(§,s)_—lfu—s:f:udu.
Then j
; sin 1 gl—o
(3.12) I=ra-s®leato(97)  (s<di<,
3 2—0
(3.13) I=F(1—s)2$%8n+0<tft_?)> (At <&<t),
1—a
(3.14) 1=0(§_t) (t< &< At),
(3.15) I=0(¢7) (b<dt<é),
and
(3.16) I=0(&""Vt)

i any case.

It is sufficient to consider the integral which contains coswu; and we
suppose first that & >¢. We have

21 =fu-8e"‘“du —l—fu*‘e““du =I+1",
H §
say. In the first place

o0
# . N
I =f,u-oe—l(u+tlozu)du =f,u—aei,w du,
§ &
where
w=1u -+ tlogu.

Since w and w increase together, we have
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The real part of I” is
UY=L

(<3

cos W
- d

299
u=3"
- CO8 w & <
w:s of*—-t—dw (§<§’)
atsl-t o
uw—-¥
s—q 2 !
=— fcoswdw (F<& &)
1+ ”‘_; u=<
= 0(&7")

The imaginary part may be treated in the same way. Ience, in proving
(8.14) and (8.15), we need only consider I'.

Again - -
Il:_fu—aei(u-tlogu)du =J'u—aeiwdu,
H ¢
where
w=1u—tlogu.
Since & > ¢,
d
so that # and w increase together. Hence
Y=o
w
II= u“’-ei—}—dw.
umg  1-o
The real part of I’ is
W= u=§/
08 W E° gi-e ’
- t—dw= r coswdw =0 rs (§<E>;
1— - 1—- °
un
y=F u=;
and similarly for the imaginary part. Sinee
é’i‘tzo(l) (6> At>1),

this proves (3. 14) and (8. 15).
Next, suppose £ < ¢. Then

z

I=F(I—s)sin%sn—é]‘%—*’cosudu

1—-5§

5
=B{Z1—s)siné1-3n — 5 cosé ~——_1Tfu1"sinudu
0

1—s 1—s

§
1-o
=I(1-—3s) sin%an-{— 0<E—t-—> - I—l_:—sfu“ssinudu.
o
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Hence, in order to prove (3. 12) and (3. 13), 1t is enough to prove that

(3.17) I, mfu‘*‘sinudu ~-0(;~;;—}

U
Now

- o . i . ’ (12
20, = Jurt-tetvdy — | ut-setvdu — I, —1I,,
i 1 1
4] U

say. In the first place

3 &
..____f u1~ne—i(u+tlonu)du:f u‘“"e“'”du,
1 1

where- w == u - tlogu. The real part of I is

u=d "

;J coswdw = 0" (05" &)
(] é‘

u=0 u=§

and similarly for the imaginary part. Hence, in proving (3. 17), we may
confine our attention to ,’

Now

§ §
’
Il :fuanei(u—tlogu)du — ful—oetwdu,
0 0

where w=u —tlogu. As &<t

dw ¢
dd“l —~ -0,

"

so that w decreases as u increases, The real part of I, is

LS u=r

EB—O ' -
wltme——d cos wdw = 0( — ) (0<&'<E).
1———— .-..1 H

The imaginary part may be treated in the same way, sa-that we-obtain
(8.17), and therefore (3. 12} and (3. 18).

It remsins to prove (8. 16). If &> 17 V#;¥'we have
1= 0({5) =0 () —o0=vi)
and if §St—f we have

I=T(1-s)sinjon+0(;ig )= 0( ) 1ot~ 25) = 0¥,
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We may suppose then that t — Vi< & _t - Vi, If &.2¢ we write

¢ IR Y] -

rJ o

= LI RN
and if &£:-¢ we write

¢ ¢ iyt
and it is plainly enough to show that

» !
(3.18)  Ju cendu- OW° 7 VeSSt Vi,
4

and this is obvious, since the integrand is O(t™").

Hence we obtain (3. 18), and the proof of Lemma 12 is completed.

The lemma was stated for positive values of . The corresponding
results when ¢ is negative may be written down at once, by appropriate
changes of ¢ into £ .

Lemma 13. The equations (3. 14) and (3. 15) of Lemma 12 hold
for any positive value of o.

In faet, in proving these equations, no use was made of the assumption
that . 1.

3.2, Lemma 14. If o is fized and
0- o<1, >4, y>4, Zrzy-= ti,

then
- , 1,
L) =Y+ Snet 0w )+0( 0y,
nz <y
where

1
At —# g N7 (atsant

=) ()
This lemma (the ‘approximate functional equation’) is important in

warious parts of the theory of {(8). At present, however, we shall be content

to prove it in an imperfect form, which follows more naturally from our

previous analysis and is sufficient for our immediate purpose. We accor-

dingly- reserve the proof of Lemma 14 for publication elsewhere, and here

prove ohly
Lemma 15. Under the conditions of Lemma 14,
P(o) = nt b g Dm0z 418"y hlog t ),

na nly
Mathemntische Zeitschritt, X. 20)
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We may plainly suppose £ > 0. We have, by Lemma 1,

® =«
1—32 1 ]

(3.21) :(8)*7“::: s~—_>_,n‘“ 2(2:r)“"1)_,n3"fu”‘cosudu
_ ~

n
no% Ipx

=:~2(2:r1”_1(2+ ‘:\: -+ Z):81+S:'

nlBy By<alcy Cy<ln

say, B and C being constants and 0 < B <1 < C.
We begin by considering 8;,. We have

”»% x

bt }
CE-1 x . -1 .
2(2x)° 'n"‘fu"'cosudu:u — - sin2naz 4 28(2x) n"‘fu“*"sm udu,
Encx 2nzz

o

T \en2nax p -1\ :
8 o= T : _1_28(277)‘ N -t u~ ¢t~ lginudu.
3 x n ' et
Cy<n Cy<n 2nazx

The first term here is O (z~"), since 2 cin 25195 is boundedly con-

vergent. The second is

0 (th"”‘ (nx)*”'“) = O(tw;n_l> =0(z~"),

Cy<n
by (3.15) and Lemma 13. Hence
(3.22) 8y =0(x"7).
Next, we have, by (8.12),

(8.23) 8,=2(22)"'I'(1 —s)sinlsn 3 ne-14 8 =8, +8;,
2

n< By
where
” layo 1—a
3.24) & =0(Fa1?* L)~ 0(¥2 ) = 0(2-).
n<lBy
From (3.23) and (3.24) we deduce
(8.25) 8, + 8= 8;+ O(z~°).

It remains to discuss §,.
3.3. We have

(.81) 8, — 2(2a)*" Zns-tfwmud'u

BySnL 0y snne

=2(2m)( + 3 + 3)
(”4 Byindy-4 y-A4ZnSy+4 p+A<nL0y

15}

=S‘;+ S;I+Sz ’
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say. By (3.16),

) 8y =0( N wevna V- 0(95;\‘) —o{d "y,

. Y \
y-A<aly-4d

Secondly, by (3. 141,
” 1
(3- 822) S.: == 0 < ‘\—’Y ,n,,_l .'(”-l) ]

= O © N S Ozmlogy) Oz~ logt).

Finally, by (3. 33
(8.823) Sa- 2(22) ' I'(1—s)sinlsen Y, ntt--8i,- Su,+ Sh.

L
where BrSneyns
’ . (na)¥°
(8. 324) SM~—0( P ’m‘:?zm)“>
By nly-4

~a

© -y 1 al="ylogt .
= 0(‘ ~~t«y ;\_, y__,,) = 0( fm > O(z~"logt).
Byin<y-4
From (3.21), (3.23), (3.31), (3.321), (3.322), (3. 323} and (3. 324,
we deduce

1—-2 ’ , ) .
(3.83) (&) i _, ~ Mm-S - 8- Oz ~logt) ! ot Ty
n<z

=2(22)' (- s)sin;anzyn'“’-f- Q(x-"logt)-}- 0(!5“" oo
ny—-4
Now

2 o(* ) =0, 2(2a) P —s)sin ) ox— 2 (1+0(})),

-8

o L e
x0(12> D = 0ty = 08 7y,
A y—4

and we may plainly replace n <z and n <<y — 4 by n <% and n - y.
- Hience we obtain the result of Lemms 15,

T‘?"?’
4. Discussion of [ I'dt.
T

Lemma 16. If A<T <P, 0<{<T, 0<y<T, then

o l t L) - ml
(4.1) JG a0 1),
20*
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The integral is

™
je- f ervdi,
7
where
w=(¢+ y)(logt — 1 — log &),
dw t y
FIE IOg R + Y (),
du 1 15y
dt® t t-
The real part of § is
u=T" u=T"

f_cof‘“w - dw = - “zlv . j COSwdeO( IT> (T<T"<T),
usplog - 45 log ¢ =~ pusr 8%

and similarly for the imaginary part.
Lemma 17. If { 18 positive
X(t)= 0+ 6 0t togt),

i EEY) -
a\t/ ot O\ —ia -1 -t _‘/t
0= —(5)(gne) ¥ 0TI =g,

n<r

where

and O is the conjugate of ©.
Taking o ==}, 2= y=1 in Lemma 15, we obtain
I oy ¢ \T iad 1 -
(4.12) ¢<§+zt) :27@ ? "‘+(—2—;‘—e> e Zn e on %logt).
LA n<lz
But, by (2.61),

(3 0= - )i (55) " x w1+ 0(F):

Substituting in (4.12), and observing that
0(3) Ynt=00"H=0(" 10g1),
n<z

we obtain the result of the lemma.
4.2. We suppose now that

(4.21) 3<a<b
and, for the present, that
(4.22) b

wlen
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[

that
(4.23) 70U -T°
and
(4.24) 0.<H<T,

where ¢=c(a) is a positive constant which will be chosen small enough
to satisfy & number of conditions appearing in the sequel: and that

T-U
(4.25) J T [Idt,
p.
where
t+H
(4.26) I=1I(t,H)= [ X(w)du.
[3

From this point onwards 4, B, C, ... and the constants of the O’s depend
upon a only.

We shall now prove

Lemma 18. If T° < U- T®, where a>), and 0-2H .77,
where ¢ is positive and sufficiently small, then
T+U
2 -- U
J;:fI dt=aV27 HU +0(, 0 7).
7
Suppose that 0 <« < H, 0 XL H. Then
X(t+¢)= 0.+ O+ 0 (171 logt),

where @, is obtained from @ by writing ¢+ « in the place of . Since
Vi+« — Vt=o0(1), we may replace the limits of summation in 6, by

n <. Also
(%_g)&i(ua)m (_2_%);»' G+ tia (1 +0 (f?_))’

and the contribution of the error term here to @, is
oS i) =0,

if ¢ is small enough. Hence

(4.27) X(t+a)= P, + D+ O (™4 logt),

where

(4.28) D, = — (Ef (—*t——)%i(tw) elta- é‘-ﬂ'Zn— bt
nlr
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and

(4.20) X(t-+o)X(E+p) =~ B Py+ b, B+ P, Dy D, By

+0(t ogt Zn b-ivral) 4o (s 410gtnin“z““+ﬂ)1>

+0(t ¥ (logt)” ) P+PLQ+Q-L-R L R,+0(t }(logt))
say.
4.3. We shall prove first that

Ir+U r+U0
(4.31) [Rdt—=0@WT™*), [R,di=0(UT*),
T T

uniformly for 0 e < H, 0 <AL H. It is sufficient to consider the
first integral.

If 7= \/——-, we have
(4.82) zyn‘l‘“‘*"’——Zn"f"”“'“’=0<~U—i>-4O(T"“)
) Vs

n<e 2T VT
by (4.22) and (4.23), and so
R,=0(t Sn-i-ieral) L o4y,
Hence ‘ n< T
T+U T+U

(4 33) ledt = 0 <ft—4 logt lZn—%‘—i(#}-a)
T T al T

The first term on the right hand side is

o(r<[|5ae)=o (T—AVU:; Sw)).

nl T

dt) +OUT™4).

But
T+U r+0

f‘Z‘ 2t — 2 ‘/mnf<%)m+a)dt

LT

9
=U +0 2 S S
ng (m,n<!£1\/‘~ log ——-t)
=QUlogT)+ O0(TlogT)=0(UlogT),
by Lemma 5, (4.21), and (4.23). Hence
T+U

(4.80) 174 [| 3| dt=0(2*VT VTIgT) = 0(FT™4),

7 n<I
and (4.31) now follows from (4.33) and (4.34).

?) The dash implies as usual that m==n.
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4.4. Next we prove that

T+U

r+Y
(4.41) [Pdt=0UT "), fP t=0UT 4.
T

It is sufficient to consider the first integral. We begin by replacing
the limits of summation in @, and Dg by limits of the type n 2 T.

By (4.23),
( Z . 2) = b ECEe L
mon<lr monlT
O(T_ ‘\ N, b-ttia) ) +0(T—A ‘,_\_:n“f' i(t;p‘)‘> + 0T,
m<Z 2l T
The last term obviously gives rise to an error O (U7 ™), and the argu-

ment of the last section shows that the same is true of the first two
terms. Hence the change of the limits of summation is irrelevant to the

argument.
Now
P+ U
i+ Jilu+ . . ~
(4.42) f(?%) 2 ( 2> mmii - () “) dt
T * m,n<lT
T+U .
_ 1 ( t >it+ Tetat 4l >
—0<Z ’:If 2aemn dt ).
myal T VR ¥

i we write 2amn=¢ and 3(¢4 )=y, we have Ei\:‘T and
0<y<H<T. Hence we may apply Lemma 16, and the infegral on
the right hand side of (4.42) is

If m<4n we have
T 4 m |,
log 5 Sxmn = 10g< ma ) = &log—’;l,
and if m=n < T —1 we have

T T I
10g2:zmn log27z # ==210g—’£.

These results give us upper bounds for all the terms in (4.42) except
that for which m and n have each their greatest value, and this term

is plainly O (%) We thus obtain
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=0 . — o 1 o g
f (m,%T\MWOg%g)_}— (mg’r—lmlog{:}‘,— <T
=0T +0( X )t o( 3 1Yo ()

m<if Yy TEmL 71

. -4
=0(TlogT)+ O(logT) + O (T 1ogTy + 0 () = OWT 7).

since U > T* and T = O (VT). We have thus proved (.41 )-
4.5. From (4.29), (4.81), and (4.41) it follows that
T+U Tr+U

(4.51) jX(t+a)X(t+ﬂ)dt=Tf(Q +Qdt-roUT™*)-

It is clear moreover that, in Q and @, we may modify the 1imit§ of
summation in the same way as in P and P. Denoting the modified
forms of Q and Q by @, and @,, we have

T+Uo r+U H H
(4.52) J=fI'dt=2fdt0f6fX(t+a)X(t+ﬁ)dccdﬂ
P ,
HH T-+U

=J Jawdp [ X (14 @) X (t+ p)dedp

" H T+ U
JJaeapf(@+Q)at+o@ UT)

J+OHUT™) = +0(UT™),

say, if ¢ is sufficiently small.
4.6. The value of J is, by (4.28) and (4.29),

HH T+0

. = ) ¢\ —leva, —i44 i
(4.61) J=V2n§RUJdadﬂJ(§—;) mgg i pmirin (2) dt | .

We begin the discussion of the right hand side by showing that the con-
tribution of the terms for which m == n is O(UT™4),

If m 4 n, write * =t and o (¢—f) =17, so that |y | < H. Then

74T iy i THT ™o 1 H

. ) Ly e £14 iv—1 Attt P ey
ft"'c“‘dt: [-.7‘.1,—“}17 —%ft r=1g dt-——o(m>+0 gﬁ;‘{) = 09%)
A z

Hence the terms in which m =+ n contribute, when we integrate with

respect to 1, ,
0 vl \=0(TlgT),
(MZ@ ymn 1og.’;j_|)

I

l
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and when we integrate with respect to « and g,
0(H?VTlogT)=0UT ),

if once more ¢ is sufficiently small.
We have therefore, from (4. 52) and (4.61),

HH belemih 1 _
(4.62) J -V2am' N lfjdcfdﬁf\ P T+ O(UT
n&’t H
4.7. Write
e =t ¥
Then
o in( Hlog o)}’
Jila—m __(sin{} Hloge -
jjv d“dﬂ"—& tloge ) Voo
L]
say. Also ’
. glocos( Hlogw) 2fd11f (LH,logv) & H..
" (log v)*

Hence, if u—n £1,

H,

H
v, .V, - zfdy,f(ms(; Hylog, ! . —vos(} H,log Qﬂtﬁé))dy
L] 1)

The difference of cosines here is

omo(F) - of3),
and .
(4.71) v,—v,=0(%).
We have now, from (4.62),

T+T

al? T T §n< T

309

4y,

o
2

J+O(UT *)=V2z )"”J'V,,ds— (CEDIRREENP N A

say. The first sum is

e
o St k) =0l

Wyt

In J, we may replace summation with respect to » by integration with

respect to u, with an error

- U7 = 3 -4y —4
ogkjna ) OHEPUT ) =0(U T~y
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if ¢ is small enough. Thus

T+U T (1 : ) 9
sin | | H log
\ 5 4 2w du U
(4.72) J=V2a|dt ( 1 l'~~~vt~ - “ww) ” — 4 0(5511).
A 1 %85
T

4.8. In (4.72) we may replace 7_’:\/;; by r:\/%. For since

71— T = 0(«%), the error thus introduced is
v

T+T -
o( iL.H‘“’-—Ldz)zo(H U‘):o( u )
VT \/T T logT
if ¢ is small enough. Further, if we write
t SHZi dw _ 2dz
_ Tawt = ¢ Tw T HEH
we obtain
I
(snl;LHlOanuz) _.~_~2Hf smz
loggqug
Ty
where
=- 1 —
& H oo \/T
Thus the integral in (4.72) becomes
T+U T+U
(4.78) ZVQandtf 02 s — 2V Hf( n+0 (3 ))
mnVZnHU+O(10gT)

Finally, from (4.72), and (4.73), we deduce
J=2VExHU +0(lr),

and Lemma 18 is proved, when b =

4.9. Tt is easy now to remove the restrietion that & = 2. Suppose
only that U > 7%, and let

U=7T% d=31(a+1) <a.

U, =0 (auegm):

Then
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if ¢ is small enough, and -

T+{r-11 T,

flgdtznv'é;HUl—{—O(loé(TLirUlJ ~ V3 HU+0(2y)
T U,
forr=0,1,2, ..., »r — 1 == vl 1. Adding all these equations, we obtain
! Ly, ) g q

T+v U,

_ , rU _ c oy U

f_[ dt == J'EVQJTHL }JFO\(Qg ) ~7!V.1nH(J LO\[BQ"[V"
I
Also

TiU

[ra—owmv)+o( L) =0(.L,).

T+»0,

The sum of the last two equations gives the result required.

b. Proot that Noy(T -+ U) — No(T) >
5.1. Lemma 19. If U and H satisfy the condstions of Lemma 18, and

t+H

M=M(t,H)=th(l§+iu)du—~H

then
T+U

N=N(T,U0)=[IM{"dt=0(U).
T
The proof of this lemma is very similar to that of Lemma 18. As
there, we suppose initially that b=35 and ¢t>0. We have, by Lemma 15,
pltt+oy=C0(F+ it +4a)—~1
__Zm -zt~za+< + )_i“q-a)elt:zizn—é-}-ité-ia +0<T—A)

2xe

2£m<"" . n<rg
—t (4
where 7, =\/£-§— f. As in 4.2, we may replace 7, by 7, and <t":“>
—ili+a)
by (5%;)  e-ie. Thus
, ~i(t+a) L. ) ~
(P(t + o:) = va"'%“““"“ + (_é—:t_e-) eiﬂt—wzn—fﬂﬂia + O(T A)’
2$m<r n
$(t+8) Zm—é-—HH'zﬂ_i_( & )t(t+ﬂ)e-}ﬂi+i/ﬁ‘2n—%—it——ip+O(T—A).
2<m<1 2me nr

We have therefore
¢(t+a)¢(t+ﬁ)=P+Q1+Q2+R+81+S‘Z+S3+S4+W’
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where
P— 2] m;é——z’z-—m m;;»+z't+z'5,

Ql _ <2i8)i(z+ﬂ)

@, is a sum of the same type as @,
Hp—0) s e
T

2n
8,=0 (T-A ‘ Zm—-}—it—ia ) ,

8,,8,;, 8, are sums of the same type as S, and
W=0(T"").

In the summations every m runs over the range 2 <m <7 and every n
over the range 1< n <.

We write
T+7 T+0

Jot+@a+p)at=[(P+Q+Q+ B+ 8,+8,+8+8,+W)dt
=P° Q)+ Q)+ B+ 8+ 87+ 8+ 8] + W

~Yaitd Y~ l—ft—fa, ~ -t~
a4 zﬂzm -q fay,~i-i lﬂ’

Obviously
(5.11) W= o(UT™4);
and
(5.12) S+ 8] +8) 48 =0(UT ™%
in virtue of the argument of 4.3.

Next

74T T+U i
-« 4 ¢
~f01dt'- ‘,mm o ’J(m;y;;} dt

r+U c
)

= 0( ‘/;,;',,; ,f 2nemn>
and so, by the argument of 4.4,
(5.18) Q) +Qy =0(UT ™),
Thus
T+U .
(5.14)  Jo(t+o)F(t+p)dt=P + R+ O(UT™).
T .
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5.2. Again
T+T

T+
(5.21) *JRdt—Zn bria - 1ei [(22 o
:Z+Z=Rl +R-39

ng=ng Ny F+ng
say. Now
T

+U
t (p— m 1' X 1
(21 ” I (R, == 1y,
vt Hognl--'
i 2

by the argument of 4.6; and so

(5.22) R§=0(2 - L———]):O(TlogT)mO(UT‘A).

) \fn‘n, | iogn,,l
Similarly
T+U T+0
(5- 23) P0= Pdt—: m—é-—in m‘-é_;.iﬁ
1 3
T P
=Y+ 3 =P +P,
my=ma MM
and
s - 1 _
(5.24) P;):O( A\J 3 ) O(UT

sy =k VY, Mg l 10g -t l
24

From (5.14), (5.21), (5.22), (5.23) and (5.24), it follows that
74U

(5.25) Z_I'qn(t—}—oc)g‘o(t—i—ﬂ)dtfo—}—Rf—kO(UT"‘).

5.3. Hence
T+U T4+U

(5.81) N=[|M|*dt=[MMdt
T T

H
| =detof(5(-1 +it+ia)—~1)daf(§(7‘j—-z't—iﬁ)——l)dﬂ

740 T+U

=[d tf«p(t+« d«f«p(tw dp= fd«fdﬂfqo<t+a>cp(t+ﬂ>dt

T

I
oy

0f(P +BY)dedf+-O0HTT™)

f!:

I
o,

g< P} + B))dadf+0(UT™),

if ¢ is sufﬁcwntly small.
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Now 70 .
0 NI t i@ -a)
R, :2 nite—f-1 (2ﬂ> dt,
T

T+U HH

(5.32) ffRfdadﬂ =y %detufuf(gi—ﬂ)w_a)dadﬂ

(logUT) 2) =0 (IogT) )

Further
740
Pf :Zv,ni(ﬂ*u)—lfdt — UZm‘l;(ﬁ“ﬂ)—l,
HEH !
0 1 (sin(f Hlogm)\? _
(5.33) ff Placdp=4U F L (2CEoem)_ oy
00
Finally, from (5.25), (5.32) and (5.33), we deduce
N=0(U)

the result of the lemma, when b ==3. This restriction on b may now be
removed just as in 4.9,
‘ 5.4, As in 2.8 we write

t+H

I=[1X(u)|du.
4
Lemma 20. There exisis an A such that
I>1H
throughout the interval T = (T, T + U), except in a set 8 of measure

less than é—g .

Pravided we choose 4 >16, we may suppose H > 4. We have
then, by (2. 61)
t+H

1= (5 [l + ol 0 )2

> (g)tﬂc(—;— +iu)|dut0(HTHE) > ()} (sﬁtfc(% +iu)du—1)

T

~ @ E—-1+%m)> (3 M)
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Hence, in 8,
[

v

1H.
74T *
Since J-,M]th < AU, we must have
¥
(LH)'mS < AU,
whence the lemma.
5.5, From Lemma 18 we have
T+U
(5.51) flzdta::AHU (H = 4).
bt
This inequality is sufficient for the deduction of Theorem B. Let 8" be
the sub-set of 7' for which [J| > 1 H. By (5.51),
mg <47,
Now I > |I|, except possibly in § 4+ 8'. The measure of § -+ §' is less
than eg U, where ey is a function of H only which tends to zero as
H — oo; and Theorem B follows by the argument used in 2.9 to establish
Theorem A.

6. Remarks on the proof of Theorem B,

6.1. As was observed in 5.5 we do not use the full force of
Lemma 18. The complete lemma, however, seems of considerable interest
in itself, and it may prove to be of service in the future. At the moment,
however, we are unable to derive from it any suggestion for a method
for reducing the factor log 7 by which Theorem B falls short of what is
doubtless the real truth. It is instructive to examine how our proof
fails to give more, and we add in conclusion somse remarks on this and
on related points.

6.2. The inequality (5.51) may be replaced by the more precise

relation r+T

(6.21) %Tf (é)gdt=0<;i)—]—0(}l—2—:-°g—1—,).

Now I:H is the mean of X (%) in ¢ to ¢+ H, and the left hand side
of (6.21) is the mean square of I:H. The equation (6.21) expresses
the fact that the mean of X (u) diminishes, on the average, in absolute
value as H increases, a fact naturally connected with the presence of
zeros. An equation of this kind is, indeed, the kernel of the proof.

To carry out the details, however, we have to compare I and [
There is no known direct means of averaging I (as opposed to [ . Now I
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t+H
is substantially B [|¢(2 4 iu) du. We proceed in our proof by using
the inequality

t+H t+H t+H

(6. 22) Jicldi=| [edt 2R [cdt=H+ R M;
t [ t

10§T’ the mean square of (M| is O(H),

so that M 1is generally O(VH). This enables us to show that I is
generally greater than } BH, when H is a sufficiently large constant, “and
g0, since I is generally less than 3 BH, to deduce our theorem.

But since VH dominates H when H is small, the argument fails
when H is a small constant, and this is the obstacle to further progress.

When H is small, R M is (generally) more important than H. It
might be supposed that the mean square of B| f tdt' is greater than
that of I, and that, if we could overcome difficulties of detail, we could
conclude that I is generally greater than I. But unfortunately the
mean square of B| f tdt], when H is small, is asymptotically one half
that of I, as may be verified from (5.33)'°). It would appear, then,
that we lose something essential in replacing [(¢|d¢ by |[¢dt|. This
does not sound very surprising at first sight. But there is less difference
between the two expressions, or between | X (u)| and B{ (3 + ¢u), than
might be supposed. If we assume the Riemann hypothesis, and write

N(T) =;—n(TlogT —(1+log2mT)+ R(T),
we have, from (2.61),
Y ' 1
ti+i0) =41x@)|(1+0())
£+ i) =4 X (5) (14 0(F)).
Now it is known that R (T)==0(logT) and it is possible to show that

and we show that, when H >

%f{R(t){dt=0(loglogT).

i+ H

fC (3+1u) dul

Thus we should expect that, provided H = ( Toglog T)

t+H
would generally be asymptotically equivalent to [ | (% 4 iu)|du.
[ — 11

10) It is easily shown that, when H is small,

4zsin“'(g~Hlogn)~4fsin“‘(;~Hlogu)du=nH.

n (log )’ J  u(logu)’
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6.3. We note finally a deduction from Lemma 18 which, though
we are unable to make any use of it, appears very curious.
Let K satisfy the same conditions as H. Then, since
I{t, H+ K)=1I(t,H)-}-I(t+ H, K),
we have
T+U T+U T+U

JI(6, H\I(t+H,K)dt =} [I’(¢, H4 K)dt — L [ I°(t, H)d¢
T T T

f[‘-+—Un
— 3 [I*t H, K)dt
T
Now
T+U T+U T+H T+U+H
fz (4 H, Kdt—-fz(t Kdt_fz tht+f1 (t, K)dt,
r+U
T+0
2 @ :‘)+€
I‘(Ig(t—}—H,K)—I'(t,K))dtzO(HK‘T‘ )=0(E§T—),
7
provided ¢ is small enough. Hence
r+0U r+U r+U
[16, m)10+ 8,84 fz (t, H+K)d ~—2f1 (t, H)dt
7

T+U .
— .;_szg(t, K)dt+0(per) = Olpe7):

by Lemma 18. This is true uniformly for 0 < H LT 0K LT
when ¢ =c¢(a) is sufficiently small.

(Eingegangen am 14. Oktober 1920.)
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