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Mathematical Optimization

Optimization Problem

minimize  fo(x)
subject to  fi(x) <b;, i=1,....m

e v = (xy,...,T,): optimization variables
e fo:R"™ — R: objective function
e i:R" =R, i=1,..., m: constraint functions

optimal solution =* has smallest value of fy among all vectors that
satisfy the constraints



Applications

Dimensionality Reduction (PCA)

max w'Cw
weRd

s.t. [wll5=1

Clustering (NMF)
min Ix - uvT;

UeRka’Ve]RnXk

s. t. U=0V=0
Classification (SVM)

min W2 - e
WeR4,beR 0= 9 +C;mﬂ"~{01 yi[W - Xi + b}



Least-squares

The Problem

minimize fo(z) = [|[Az — b3 = Zk (aTz — b;)?

i—1

B Given a; € R%, predict b; € R by a/x
Properties

e analytical solution: 2* = (AT A)=1ATH
e reliable and efficient algorithms and software
e computation time |proportional to n?k (A € ka”); less if structured

e a mature technology



Linear Programming

The Problem

T

minimize ¢ x
subject to alx <b;, i=1,.... m
Here the vectors c,aq,...,a,, € R" and scalars by,....b,, € R are problem pa-

rameters that specify the objective and constraint functions.

Properties

no analytical formula for solution
reliable and efficient algorithms and software
computation time proportional to n2m if m > n; less with structure

a mature technology



Convex Optimization Problem

The Problem

minimize  fo(x)
subject to  fi(x) <b;, i=1,....m

Conditions

e objective and constraint functions are convex:
filox + By) < afi(x) + Bfi(y)
fa+i=1a>0 >0

e includes least-squares problems and linear programs as special cases



Convex Optimization Problem

The Problem

minimize  fo(x)
subject to  fi(x) <b;, i=1,....m

Properties

e no analytical solution
e reliable and efficient algorithms

e computation time (roughly) proportional to max{n>, n?m, F}, where F
is cost of evaluating f;'s and their first and second derivatives

e almost a technology



Nonlinear Optimization

[1 Definition
B The objective or constraint functions are not linear

B Could be convex or nonconvex

local optimization methods (nonlinear programming)

e find a point that minimizes f; among feasible points near it
e fast, can handle large problems

e require initial guess

e provide no information about distance to (global) optimum

global optimization methods
e find the (global) solution

e worst-case complexity grows exponentially with problem size
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Affine Set

line through 1, x2: all points

r=0r;+ (1 — 9);.1‘,'9 ({{?JI - R)

=10
9:—02

affine set: contains thelline|through any two distinct points in the set

Az = b)

example: solution set

(conversely, every affine set can be expressed as solution set of system of

linear equations)



Convex Set

line segment between 11 and x2: all points

with 0 <6 <1

convex set: contains

x1,x9 € C,

x="H0x1+ (1 —0)xry

line segment

0<A<1

between any two points in the set

—  fr+ (1 — 9).‘1?2 eC

examples (one convex, two nonconvex sets)




Convex Cone

conic (nonnegative) combination of x; and x2: any point of the form
r = 0111+ Or19

with 91 > (), QQ >0

convex cone: set that contains all conic combinations of points in the set



Some Examples (1)

hyperplane: set of the form {x | a2 = b} (a # 0)

a

Tg
a

e a Is the normal vector

e hyperplanes are affine and convex; halfspaces are convex



Some Examples (2)

(Euclidean) ball with center x. and radius 7:

B(xe,r) ={x | ||z — x|l < r} ={xc+ru | ||ull2 < 1}

ellipsoid: set of the form
(| (x—2)" P o —2.) <1}

with P € S, (i.e., P symmetric positive definite)

other representation: {z.+ Au | ||u]l2 < 1} with A square and nonsingular



Some Examples (3)

norm: a function || - || that satisfies

o |z|| = 0; |

zl| =0 if and only if 2 =0
o |tx| =|t|||x]| fort € R

o [lz+yl < [lzlf+ llyl
notation: || - || is general (unspecified) norm; || - ||symb is particular norm

norm ball with center . and radius r: {x | ||z — x| < 7}

norm cone: {(z.1) | |z| <t} . ,f’“
0.2
Euclidean norm cone is called second-
order cone 0
0 . !
To —1 —1 1

norm balls and cones are convex



Operations that Preserve
Convexity

practical methods for establishing convexity of a set C
1. apply definition

ri,0eC, 0<68<1 = HOr;+(1—-0)ayel’

2. show that (' is obtained from simple convex sets (hyperplanes,
halfspaces, norm balls, . . . ) by operations that preserve convexity

e intersection

e affine functions

e perspective function

e linear-fractional functions



Convex Functions

f:R™ — R is convex if dom f is a convex set and

fO0x+ (1 —=0)y) <0f(x) + (1—-0)f(y)

forall z,y edom f,0<6 <1

(y. f(y))
(z, f(x))-

e f is concave if —f is convex

e f is strictly convex if dom f is conyvex and

F0r+ (1—0)y) < 0f(x) + (1 — 0)f(y)

forz,yedomf, x#y, 0< <1



Examples on R

convex:

e affine: ar +bon R, for any a,b € R

e exponential: €®® for any a € R

e powers: x* on R., fora>1lora <0

e powers of absolute value: |[z|P on R, for p > 1

e negative entropy: xlogx on R. .

concave:
e affine: ar +bon R, for any a,b € R
e powers: x“ on R. . for0<a <1

e logarithm: logx on R4



Examples on R™* and R™*"

affine functions are convex and concave: all norms are convex
examples on R"

e affine function f(z) =a’x +b

e norms: ||z, = (o1, |zi|P)Y/P for p > 1; ||7||cc = maxy |2k

R'ﬂ'l‘- X

examples on (m X n matrices)

e affine function

T T

FX)=tr(ATX) +b=) > AyX;+b

1=1 =1

e spectral (maximum singular value) norm

f(){) — ”){”2 — gmax(){) — (}"max(JYTJY))UQ



Restriction of a Convex
Function to a Line

f:R™ — R is convex if and only if the function ¢ : R — R,
g(t) = f(x + tv), domg ={t|z+tv € dom f}

is convex (in t) for any € dom f, v € R"
can check convexity of f by checking convexity of functions of one variable

example. f:S" — R with f(X) =logdet X, dom f =S"
g(t) = logdet(X +tV) = logdetX + logdet(I + tX—l/ETVrX—l/Q)

= logdet X + Z log(1+tA;)
i=1

where )\; are the eigenvalues of X ~1/2V X ~1/2

g is concave in t (for any choice of X = 0, V'); hence f is concave



First-order Conditions

f i1s differentiable if dom f is open and the gradient

lf};l'fl 0 Tro 0 Ty

—— (af(m) 0f (x) m)

exists at each r € dom f

1st-order condition: differentiable f with convex domain is convex iff

fy) = f(x) +Vf () (y—z) forall 2,y € dom f

f(y)
f(z) +Vf(x) (y — )

“(x, f(z))

first-order approximation of f is global underestimator




Second-order Conditions

f is twice differentiable if dom f is open and the Hessian V2f(x) € S",

32 I
ng(;l'f).ij = f(f) EJ =1,.... T,

D0 ;

exists at each r € dom f

2nd-order conditions: for twice differentiable f with convex domain

e f is convex if and only if

V2f(x) =0 forall x € dom f

o if V2f(x) = 0 for all z € dom f, then f is strictly convex



Examples

quadratic function: f(z) = (1/2)2" Pz + ¢Tx 4+ r (with P € S™)
Vf(z)= Pl +q. Vif(x)=P

convex if P =0

least-squares objective: f(r) = ||Azx — b||3
Vi(z)=24AT(Az—1b),  V2f(x)=24TA

convex (for any A)

quadratic-over-linear: f(x.1y) = 22/y

240 21y y 1" S
Vaf(x,y) = — ; =0 =

1 ;3 —T

convex for y > 0 y 0-2 g



Operations that Preserve
Convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)
2. for twice differentiable functions, show V2f(z) = 0

3. show that f is obtained from simple convex functions by operations
that preserve convexity

nonnegative weighted sum
composition with affine function
pointwise maximum and supremum
composition

minimization

perspective



Positive Weighted Sum &
Composition with Affine Function’

nonnegative multiple: af is convex if f is convex, a > 0
sum: f; + fo convex if fi. f5 convex (extends to infinite sums, integrals)

composition with affine function: f(Ax +b) is convex if f is convex

examples

e log barrier for linear inequalities

f(x) =— Z log(b; — al x). dom f={z|alz<b,i=1,.... m}
i=1

e (any) norm of affine function: f(x) = || Az + b||



Pointwise Maximum

if f1, ..., fm are convex, then f(z) = max{fi(z),..., fm(x)} is convex

examples

e piecewise-linear function: f(x) = max;— m(a?:r: + b;) is convex

IEEREY

e sum of r largest components of 2 € R":
f(;'i!.?) = I[1] T L[] T -+ L[y]

is convex (p; is ith largest component of )
proof:

flz) =max{x; + i+ - +ux;, |1 <ip <ig < -+ <ip < n}

Hinge loss: #(w) = max(0,1 — y;x; w)



The Conjugate Function

the conjugate of a function f is

fy)= sup (v =— f(x))

redom f

f(z)
Ty

(D: _f*(y))

e [ is convex (even if f is not)

e will be useful in chapter 5



Examples

e negative logarithm f(z) = —logx
f*(y) = sup(zy+logx)
x>0
_ —1—log(—-y) y<0
N o0 otherwise

e strictly convex quadratic f(z) = (1/2)z" Qx with Q € S™: |
f*(y) = sup(y’z— (1/2)x7Qx)

1
= S¥ Q7Y
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Optimization Problem in
Standard Form

minimize  fo(x)
subject to  fi(x) <0, i=1,....m
hi(x) =0, i=1,..., p
e 1 € R" is the optimization variable
e f5: R" — R is the objective or cost function
e [, :R" =R, i=1 ..., m, are the inequality constraint functions

e 1; : R™ — R are the equality constraint functions
optimal value:
p*=inf{fo(z) | fi(x) <0, i=1,...,m, hi(z)=0, i=1,...,p}

e p* = oo if problem is infeasible (np x satisfies the constraints)

e p* = —o0 if problem is unbounded below



Optimal and Locally Optimal
Points

x is feasible if # € dom f; and it satisfies the constraints

a feasible = is optimal if fo(x) = p*; Xopt is the set of optimal points

x is locally optimal if there is an F? > 0 such that x is optimal for
minimize (over z) fo(z

)
subject to fi(z) <0, i=1,....m, hi(z)=0, i=1,..., P
|z —z|2 <R

examples (with n =1, m = p=0)

o fo(r) =1/, dom fy = R..: p* =0, no optimal point

e fo(r)=—logx, dom fy=Rii: p" = -0

o folr)==a lu::ng x,dom fo =Ry : p* =—1/e, x =1/e is optimal
o fo(r)=a>— 3z, p* = —o0, local optimum at =z =1



Implicit Constraints

the standard form optimization problem has an implicit constraint

m p
reD= ﬂ dom f; N ﬂ dom h;,
e we call D the domain of the problem
e the constraints f;(x) <0, hj(x) = 0 are the explicit constraints

e a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:
minimize fo(xz) = — Zle log(b; — al'x)

To < by

is an unconstrained problem with implicit constraints a; :



Convex Optimization Problem

standard form convex optimization problem

minimize  fo(x)
subject to  fi(x) <0, i=1,...,m
Te=b;, i=1,....p

ﬂ'?; .

e fo, f1. ..., [ are convex; equality constraints are affine

e problem is quasiconvex if fy is quasiconvex (and fy, . . ., fm convex)

often written as
minimize  fo(x)

subject to  fi(x) <0, i=1,...,m
Ar=0>

important property: feasible set of a convex optimization problem is convex



Example

minimize  fo(z) = 2% + 23
subject to  fi(2) =21 /(1 +23) <0
hi(z) = (71 +22)2 =0
e fy is convex; feasible set {(x1,29) | 1 = —x9 < 0} is convex

e not a convex problem (according to our definition): fi is not convex, /i
is not affine

e equivalent (but not identical) to the convex problem

minimize ;1?% + ;1?3
subject to x71 <0
r1+a0=20



Local and Global Optima

any locally optimal point of a convex problem is (globally) optimal

proof: suppose z is locally optimal, but there exists a feasible i with

fo(y) < fo(x)

1 locally optimal means there is an R > 0 such that

z feasible,

c—ala <R = fol2) 2 folx)

consider 2 = fy + (1 — 0)x with 8 = R/(2||ly — z||2)

o |y —z|a >R, s00<0<1/2
e > is a convex combination of two feasible points, hence also feasible

o |z —z|2 = R/2 and

fo(z) < 8fo(y) + (L —0)fo(x) < fo(x)

which contradicts our assumption that = is locally optimal



Optimality Criterion for
Differentiable f,

1 is optimal if and only if it is feasible and

Vfo(x)'(y —x) >0 for all feasible y

—V fo(x)

if nonzero, V fy(x) defines a supporting hyperplane to feasible set X at x



Examples

e unconstrained problem: =z is optimal if and only if

r € dom fo, Vfo(z) =0

e equality constrained problem
minimize fo(x) subjectto Ax =10
x is optimal if and only if there exists a 1 such that

r € dom fo, Ax = b, Vio(x)+ATv =0

e minimization over nonnegative orthant
minimize fo(x) subjectto x>0

x is optimal if and only if

r € dom fj, xr =0, {



Popular Convex Problems

Linear Program (LP)
Linear-fractional Program

Quadratic Program (QP)
Quadratically Constrained Quadratic
program (QCQP)

Second-order Cone Programming
(SOCP)

Geometric Programming (GP)
Semidefinite Program (SDP)
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Lagrangian

standard form problem (not necessarily convex)

minimize  fo(x)
subject to fl( ) E i=1,...,m
hi(z) = '

i

variable z € R", domain D, optimal value p*



Lagrangian

standard form problem (not necessarily convex)

minimize  fo(x)
subject to fl( ) E i=1,...,m
hi(z) = '

i

variable z € R", domain D, optimal value p*

Lagrangian: L : R" x R™ x R¥ - R, with dom L =D x R™ x R”,

m p
L(z, A v) = fox) + Y Aifi(z) + > vihi(z)
i=1 i=1

e weighted sum of objective and constraint functions
e )\; is Lagrange multiplier associated with f;(z) <0

e v; is Lagrange multiplier associated with h;(z) =0



Lagrange Dual Function

Lagrange dual function: g: R™ x R” — R,

g\, v) = ;g%L(:ﬂ,k,u)

— ;IE]%‘?' (ﬁ](m) + Z )\gfl(fbﬂ) + Z I!lhi{fﬂj)
i=1 i=1

g is concave, can be —oo for some A, v



Lagrange Dual Function

Lagrange dual function: g: R™ x R” — R,

g\, v) = ;g%L(:ﬂ,k,u)

— ;IE]%‘?' (ﬁ](m) + Z )\gfl(fbﬂ) + Z I!lhi{fﬂj)
i=1 i=1

g is concave, can be —oo for some A, v
lower bound property: if A = 0, then g(\,v) < p*

proof: if T is feasible and A = 0, then

fo(&) > L(z,\,v) > inf L(z,\,v) = g(\v)

reD

minimizing over all feasible & gives p* > g(\,v)



Least-norm Solution of Linear
Equations

minimize x'x

subject to Ax =0
dual function
e Lagrangian is L(z,v) = 272 + v (Az — b)

e to minimize L over z, set gradient equal to zero:
Vol(z,v)=22+ATv =0 = z=—(1/2)ATv
e plug in in L to obtain g:
g(v) = L((—1/2)ATv,v) = —%IJTAATL’ — by
a concave function of v

lower bound property: p* > —(1/4)vT AATY — bTv for all v



Lagrange Dual and Conjugate
Function

minimize  fo(x)
subject to Ax =<b, Cx=d

dual function

g\v) = inf  (folz)+ A AN+CTV) Tz —b"N-d"V)

rcdom fj

— —f[’f(—ATk — CTIJ) —bIAN—dTy

e recall definition of conjugate f*(y) = sup,cqom s (¥’ = — f(x))

e simplifies derivation of dual if conjugate of f; is known

example: entropy maximization

T

Jo(z) = Z x; log x;, faly) = Zeyi_l
i=1

i=1



The Dual Problem

Lagrange dual problem

maximize g(\,v)

subject to A =0
e finds best lower bound on p*, obtained from Lagrange dual function
e a convex optimization problem; optimal value denoted d*
e )\, v are dual feasible if A = 0, (A\,v) € domg

e often simplified by making implicit constraint (A, r) € dom g explicit

example: standard form LP and its dual (page 5-5)
minimize ¢’z maximize —blv
subject to Ax =10 subject to ATv+c¢>=0
r =0



Weak and Strong Duality

weak duality: d* < p*
e always holds (for convex and nonconvex problems)
e can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

maximize —1Tv
subject to W + diag(v) = 0

gives a lower bound for the two-way partitioning problem on page 57



Weak and Strong Duality

weak duality: d* < p*
e always holds (for convex and nonconvex problems)

e can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

maximize —1Tv
subject to W + diag(v) = 0

gives a lower bound for the two-way partitioning problem on page 57

strong duality: d* = p*
e does not hold in general

e (usually) holds for convex problems

e conditions that guarantee strong duality in convex problems are called
constraint qualifications



Slater’s Constraint Qualificatio

strong duality holds for a convex problem

minimize  fo(x)
subject to  fi(z) <0, i=1,...,m
Ar=1>

if it is strictly feasible, 1i.e.,

dr e int D : filx) <0, i=1,...,m, Axr =10

e also guarantees that the dual optimum is attained (if p* > —o0)

e can be sharpened: e.g., can replace int D with relint D (interior

relative to affine hull); linear inequalities do not need to hold with strict
inequality, . . .

e there exist many other types of constraint qualifications



Complementary Slackness

assume strong duality holds, =* is primal optimal, (A\*,*) is dual optimal
fot) =g 0) = it (ﬁ:}(fﬂ) SN +zy:hﬁ(m))
i=1 i=1

T r

< fola) + ) Nfila*) + Y vihi(a®)
i=1 i=1

< Jfolx")

hence, the two inequalities hold with equality

e ™ minimizes L(x, \*,v")

o \ifi(x*)=0fori=1,..., m (known as complementary slackness):

b b

A > 0= fi(z*) =0, filz") < 0= A =0



Karush-Kuhn-Tucker (KKT)
Conditions

the following four conditions are called KKT conditions (for a problem with
differentiable fi, h;):

primal constraints: f;(z) <0,i=1,...,m, hy(x)=0,i=1,...,p
dual constraints: A = 0

complementary slackness: A;fi(x)=0,i=1,...,m

l

gradient of Lagrangian with respect to x vanishes:

V fo x)+ZA\7’f1 +Zu;m =0

from page 5-17: if strong duality holds and =, A, v are optimal, then they
must satisfy the KK'T conditions



KKT Conditions for Convex
Problem

~r

if £, A, U satisfy KK'T for a convex problem, then they are optimal:
e from complementary slackness: fo(#) = L(&, \, )
e from 4th condition (and convexity): g(\, #) = L(&, \, 7)

hence, fo(Z) = g(\, 7)

if Slater’s condition is satisfied:

x is optimal if and only if there exist A, v that satisfy KKT conditions

e recall that Slater implies strong duality, and dual optimum is attained

e generalizes optimality condition V fy(x) = 0 for unconstrained problem



An Example—SVM (1)

The Optimization Problem

TL

A
min Z max (U._ 1 — -y.i(WTXi + b)) + E”WH%

wecR4e beR :
i—=1

Define the hinge loss as

((r) = max(0,1 — x)

Its Conjugate Function Is

y, —1<y<0

0. otherwise

F*(y) = sup(yz — £(x)) = {



An Example—SVM (2)

The Optimization Problem becomes

T

A
1 ((L Ti—l—b)—F— 2
e 2 () 4 gl

i=1

It iIs Equivalent to

min Zf(u —||w||2
weRd beR,uckn 4

s. t. uz_yg(w x;+b),i=1...,n

The Lagrangian is

L(w.,bu,v)= Z ;) %Hw”ﬁ - i-ui (-ui — yi(wT};i — E‘J))
i=1



An Example—SVM (3)

The Lagrange Dual Function is

g(v) = inf L(w,b,u,v)

w,b.u

= inf Y f(u;) + %Hwng +3 v, (-u.?; (W X+ b))
i=1 i=1

w.b.u
T )Ih T T
= -.ﬂfuz; (£(u;) + viug)) + (§||W||é ~—w' X;. Uz'ya'xa') — b; Vi Ui
1= 1= 1=

B Minimize w, b,u one by one

inf (0(u;) + viu;)) = —sup (—vzu; — l(u;)) = =0 (—v;) =v;, it 0 <v; <1
U U
VwLl(w,bu,v) = Aw — Z viyiX; = 0= w = \ Z Vi Xi

mn

VoL(w,bu,v) = — Z-Uéyi- —
i=1



An Example—SVM (4)

Finally, We Obtain

mn

g(v) Zti — —ZZ’L tjyiyj}: X

i=1 i=1 j=1

The Dual Problem is

mys Do mzztf ol

TL
U
=1 i=1 j=1
s.t. 0<wv; <1, 1=1.

T

s. t. Zv?;yg =0

i=1



An Example—SVM (5)

Karush-Kuhn-Tucker (KKT) Conditions

Let (w,,b,,u,) and v, are primal and dual solutions.
Usj = yé{w* X T b#:]

1"
Wi = I Z Ve Yi Xy
i=1

n

Z Vi i — 0

i=1

Uy = argmin (£(u;) + vyu) =110 < vy < 1

U



An Example—SVM (5)

Karush-Kuhn-Tucker (KKT) Conditions

Let (w,,b,,u,) and v, are primal and dual solutions.

Uyi = yé{w:xi +b,)

1 — Can be used to
Wi = + Z Vi lYiXi
A\ recover w, from v,
i=1

n

Z Vi i — 0

i=1

Uy = argmin (£(u;) + vyu) =110 < vy < 1

U



An Example—SVM (5)

Karush-Kuhn-Tucker (KKT) Conditions

Let (w,,b,,u,) and v, are primal and dual solutions.

[uﬂti = y;(w,x; + b, :‘J

1
Wi = I Z Ve Yi Xy
i=1

) .
Z Vi i — 0
i=1

[ wy; = argmin (0(u;) + vyu;) = 11 0 < vy < 1 ]

Can be used to
recover b, from v,

U
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More Assumptions

Lipschitz continuous
I7f ) <6 f @) = FOI < Gllx =y

Strong Convexity
V2f(z) = ml
fy) 2 f(2) + V@) (y = @) + Flle — yl
(V) = Vi), x —y) = mllx — yll*
flax+(1-@y) < of @ + (1 - f B) - a(l - D lx = yI1?
Smooth V2 f(z) < MI
f(4) < 1(&) + V(@) (- ) + - ly — a3
(Vf) = Vf(),x —y) < Mllx —yll*




Performance Measure

The Problem

In f(w
min (W)

Convergence Rate

@ After T iterations, the gap between objectives
1 1 1 1
flwr)—f(w,)<O|—=)].0(=)].0|=|.0|—=
wn=rw) =0 (7). 0(7) o(5) o (37)

Iteration Complexity

@ Toensure f(wr) — f(W,) < ¢, the orderof T

ro() o) o() ofes!



Gradient-based Methods

The Convergence Rate

Lipschitz 1 -.1 y Smooth
L Strongly Convex Smooth y .
Continuous i Strongly Convex

GD O (Z) | EGD/SGD, O (F) | AGD O () | GD/AGD O ()
B GD—Gradient Descent

B AGD—Nesterov’'s Accelerated Gradient
Descent [Nesterov, 2005, Nesterov, 2007, Tseng,

2008]
B EGD—Epoch Gradient Descent [Hazan and
Kale, 2011]

B SGD,—SGD with a-suffix Averaging [Rakhlin
et al., 2012]



Gradient Descent (1)

Move along the opposite direction of
gradients




Gradient Descent (2)

Gradient Descent with Projection

Wi, = Wt — 1 V(W)

Wip1 = HW(W;+1)
end for

return wr = 137 . w

B Projection Operator

My (y) = argmin ||x — y||
xeW



Analysis (1)

Forany w € )W, we have

F(we) — 1 (W)
<(VF(we), W — W)
1
1 2 / 2 / 2
0 (HWr — W3 — [|W g — W5+ [[W — W Hz)
1 2 2 Tt 2
=3 (HWr —W|3 — w4 — wl\z) + 5 V(W12
Tt
< (IWe = WIB [ wes —wiE) + 3V (wo)

To simplify the above inequality, we assume
ne =, [|[VE(W)|o <G, Yvwe W, and [ X —Y|> <D, ¥ X,.ye W



Analysis (2)

Then, we have
F(Wy) — F(W) < —w|Z - - + 1G?
(W) — (W) < |We — W3 — [[Wepq — wWi|5 5

21)
By adding the inequalities of all iterations, we have
T
S f(we) — TH(w)
=1
1 nT
<5 (Iwr — W3~ |wry —w|) + 7562
1 nT
< _
—2??Hw1 WH2 2 -G
1 ?;T
<—D?%+ = GD
2n 2 vT

where we set



Analysis (3)

Then, we have



A Key Step (1)

Evaluate the Gradient or Subgradient
B Logit loss
li(w) = log (1 — e}{p(—-yixjw))

1 1
Vi;(w) = \Y% (1 + exp(—yix; W ) = Vexp(—yix; w
(W) 1+ e:{p(—yixjw) P(—yixi W) 1+ cxp(—yixjw) P(—yixi W)
S iy — 1% T
_exp(—yix; W) V(—y-,;xi_TW) _ exp(—viX; '\:) i

14 exp(—yix; w) 1 + exp(—vix; W)



A Key Step (1)

Evaluate the Gradient or Subgradient
B Logit loss
li(w) = log (1 — e}{p(—-yixjw))

1 1
Vi;(w) = \Y% (1 + exp(—yix; W ) = Vexp(—yix; w
(W) 1+ e:{p(—yixjw) P(—yixi W) 1+ cxp(—yixjw) P(—yixi W)
S iy — 1% T
_exp(—yix; W) V(—y-,;xi_TW) _ exp(—viX; '\:) i

14 exp(—yix; w) 1 + exp(—vix; W)

B Hinge loss

li(w) = max(0, 1 — yix; w)

A vector A is a sub-gradient of a function f at w if for all u £ A we have that

flu) = f(w) = (u—w,A).



A Key Step (2)

Evaluate the Gradient or Subgradient
B Logit loss
li(w) = log (1 — e}{p(—-yixjw))

1 1
Vi;(w) = \Y% (1 + exp(—yix; W ) = Vexp(—yix; w
(W) 1+ e:{p(—yixjw) P(—yixi W) 1+ cxp(—yixjw) P(—yixi W)
S iy — 1% T
_exp(—yix; W) V(—y-,;xi_TW) _ exp(—viX; '\:) i

14 exp(—yix; w) 1 + exp(—vix; W)

B Hinge loss

li(w) = max(0, 1 — yix; w)

(1. z <1 \

Jdmax(0,1 —z)=<¢ 0, z > 1 \
L [-1,0], z=1 o

A J




A Key Step (3)

Evaluate the Gradient or Subgradient
B Logit loss
li(w) = log (1 — e}{p(—-yixjw))

1 1
Vi;(w) = \Y% (1 + exp(—yix; W ) = Vexp(—yix; w
(W) 1+ e:{p(—yixjw) P(—yixi W) 1+ cxp(—yixjw) P(—yixi W)
S iy — 1% T
_exp(—yix; W) V(—y-,;xi_TW) _ exp(—viX; '\:) i

14 exp(—yix; w) 1 + exp(—vix; W)

B Hinge loss

li(w) = max(0, 1 — yix; w)

[ — i, -y.ix;._rw <1
L {—ayix; : a € [0, 1]}, -y.ixg_w — 1
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