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Mathematical Optimization

 Optimization Problem



Applications

 Dimensionality Reduction (PCA)

 Clustering (NMF)

 Classification (SVM)
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Least-squares

 The Problem
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 Properties



Linear Programming

 The Problem

 Properties



Convex Optimization Problem

 The Problem

 Conditions



Convex Optimization Problem

 The Problem

 Properties



Nonlinear Optimization
 Definition

 The objective or constraint functions are not linear
 Could be convex or nonconvex
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Affine Set



Convex Set



Convex Cone



Some Examples (1)



Some Examples (2)



Some Examples (3)



Operations that Preserve 
Convexity



Convex Functions



Examples on 



Examples on and 



Restriction of a Convex 
Function to a Line



First-order Conditions



Second-order Conditions



Examples



Operations that Preserve 
Convexity



Positive Weighted Sum & 
Composition with Affine Function



Pointwise Maximum

Hinge loss: ℓ ݓ ൌ max	ሺ0,1 െ ሻݓ௜ୃݔ௜ݕ



The Conjugate Function



Examples
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Optimization Problem in 
Standard Form



Optimal and Locally Optimal 
Points



Implicit Constraints



Convex Optimization Problem



Example



Local and Global Optima



Optimality Criterion for 
Differentiable 



Examples



Popular Convex Problems

 Linear Program (LP)
 Linear-fractional Program
 Quadratic Program (QP)
 Quadratically Constrained Quadratic 

program (QCQP)
 Second-order Cone Programming 

(SOCP)
 Geometric Programming (GP)
 Semidefinite Program (SDP)
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Lagrangian



Lagrangian



Lagrange Dual Function



Lagrange Dual Function



Least-norm Solution of Linear 
Equations



Lagrange Dual and Conjugate 
Function



The Dual Problem



Weak and Strong Duality



Weak and Strong Duality



Slater’s Constraint Qualification



Complementary Slackness



Karush-Kuhn-Tucker (KKT) 
Conditions



KKT Conditions for Convex 
Problem



An Example—SVM (1)

 The Optimization Problem

 Define the hinge loss as

 Its Conjugate Function is



An Example—SVM (2)

 The Optimization Problem becomes

 It is Equivalent to

 The Lagrangian is



An Example—SVM (3)

 The Lagrange Dual Function is

 Minimize one by one



An Example—SVM (4)

 Finally, We Obtain

 The Dual Problem is



An Example—SVM (5)

 Karush-Kuhn-Tucker (KKT) Conditions



An Example—SVM (5)

 Karush-Kuhn-Tucker (KKT) Conditions

Can be used to 
recover ܟ∗ from ܞ∗



An Example—SVM (5)

 Karush-Kuhn-Tucker (KKT) Conditions

Can be used to 
recover ܾ∗ from ܞ∗
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More Assumptions

 Lipschitz continuous

 Strong Convexity

 Smooth
݂ ݔܽ ൅ 1 െ ܽ ݕ ൑ ݂ܽ ݔ ൅ 1 െ ܽ ݂ ݕ െ ܽ 1 െ ܽ

݉
2 ݔ െ ݕ ଶ

݂ߘ ݔ െ ݂ߘ ݕ , ݔ െ ݕ ൒ ݉ ݔ െ ݕ ଶ

݂ߘ ݔ െ ݂ߘ ݕ , ݔ െ ݕ ൑ ܯ ݔ െ ݕ ଶ

ሻ ൑ݔሺ݂ߘ ܩ ݂ ݔ െ ݂ ݕ ൑ ܩ ݔ െ ݕ



Performance Measure

 The Problem

 Convergence Rate

 Iteration Complexity



Gradient-based Methods

 The Convergence Rate

 GD—Gradient Descent
 AGD—Nesterov’s Accelerated Gradient 

Descent [Nesterov, 2005, Nesterov, 2007, Tseng, 
2008]

 EGD—Epoch Gradient Descent [Hazan and 
Kale, 2011]

 SGDߙ	
—SGD with ߙ-suffix Averaging [Rakhlin

et al., 2012]



Gradient Descent (1)

 Move along the opposite direction of 
gradients



Gradient Descent (2)

 Gradient Descent with Projection

 Projection Operator



Analysis (1)



Analysis (2)



Analysis (3)



A Key Step (1)

 Evaluate the Gradient or Subgradient
 Logit loss



A Key Step (1)

 Evaluate the Gradient or Subgradient
 Logit loss

 Hinge loss



A Key Step (2)

 Evaluate the Gradient or Subgradient
 Logit loss

 Hinge loss



A Key Step (3)

 Evaluate the Gradient or Subgradient
 Logit loss

 Hinge loss
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Summary

 Convex Sets & Functions
 Definitions, Operations that Preserve 

Convexity
 Convex Optimization Problems
 Definitions, Optimality Criterion

 Duality
 Lagrange, Dual Problem, KKT Conditions 

 Convex Optimization Methods
 Gradient-based Methods
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